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Abstract

The Atlantic razor clam, Ensis directus, burrows underwater by expanding and con-

tracting its valves to fluidize the surrounding soil. Its digging method uses an order

of magnitude less energy than would be needed to push the clam directly into soil,
which could be useful in engineering applications such as anchoring and sensor place-

ment. The first chapter of this thesis presents the theoretical basis for the timescales

necessary to achieve such efficient digging and gives design parameters for a device

to validate the timescales. It then uses RoboClam, a robot designed to imitate the

razor clam's movements, to test the design rules. It was found that the minimum

contraction time is the most critical timescale for efficient digging, and that efficient

expansion times vary more widely. The results of this chapter can be used as design

rules for other robot architectures for efficient digging, optimized for the size scale

and soil type of the specific application.

The second chapter of this thesis examines whether it would be theoretically pos-

sible to use the same E. directus-inspired method to dig into dry soil, for applications

such as sensor placement. The stress state of the soil around the robot was analyzed,
and a target stress state for dry soil digging was found. Then, the two possible modes

of soil collapse were investigated and used to determine how quickly the robot would

have to contract to achieve the target stress state. It was found that for most dry

soils, a RoboClam-like device would have to contract in 0.02 seconds, a speed slightly

faster than the current robot is capable of, but still within the realm of possibility for

a similar machine. These results suggest that the biomimetic approach successfully

used by RoboClam to dig into submerged soil could feasibly be used to dig into dry

soil as well.

Thesis Supervisor: Amos G. Winter, V

Title: Associate Professor
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Chapter 1

An Experimental Investigation of

Digging via Localized Fluidization

1.1 Introduction and Background

Burrowing into subsea soil is challenging in many engineering applications, including

anchoring, sensor placement, cable installation, and mine detonation. Traditional

methods of forcibly pushing a body into soil encounter frictional forces that result

in insertion energy scaling with depth squared. However, several organisms in the

animal world have found alternative ways to dig using less energy. One such animal,

the Atlantic razor clam (Ensis directus), burrows by using a series of simple valve

contractions to fluidize the soil around it. The aim of this research is to define

design rules and parameters for a bioinspired machine that imitates E. directus to

use localized soil fluidization to dig into soil with an order of magnitude less energy

than would be required to push a blunt body to a desired depth.

In a Newtonian fluid, viscosity and density remain constant with depth. Therefore,

the force required to push a blunt body into the fluid also remains constant. This

constant force corresponds to an insertion energy, E = f F(z)dz, that scales linearly

with depth. Contrastingly, in a particulate solid (like soil), there are contact stresses

between particles that cause frictional forces that scale with the surrounding pressure,

resulting in shear strength (and insertion force) that increases linearly with depth
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[28, 23]. This linearly increasing insertion force, when integrated over depth, results

in an insertion energy that increases with depth squared. These high energy demands

can be difficult to achieve for the applications listed above.

Many animals have developed methods of burrowing into underwater soil effi-

ciently [33, 24, 32]. Clam worms (N. virens) create extensive tunnel systems in

elastic muds using crack propagation [5]. The Japanese eel (A. japonica) uses oscil-

latory motions to create underwater horizontal burrows [1]. The snake blenny (L.

lampretaefornis) uses its head to probe sand, and follows with a wave-like pattern

to create similar horizontal burrows [2]. Nematodes (C. elegans) also use undulatory

motion to move efficiently in saturated media [34, 101.

The Atlantic razor clam (E. directus) burrows into sand using a valve contraction

and expansion pattern depicted in Figure 1-1 [43, 301. These movements were studied

in depth by E R Trueman, who measured the forces, stiffnesses, angles, and pressures

involved in E directus's digging cycle [31]. Adapting these results, an upper bound

estimate of the energy needed to dig can be calculated to be 0.21 J/cm, which is

an order of magnitude less than the energy required for blunt body pushing [40].

Additionally, E. directus can only produce ION of force to push into soil, which, if

it were used to push a blunt body, would only result in 1-2cm of digging [31, 41].

However, razor clams can dig up to 70cm deep [8].This equates to traveling over

half a kilometer using the energy of an AA battery [6]. E. directus achieves this very

efficient digging by contracting its valves to fluidize the soil around it, which results in

drastic drag and energy reductions for the razor clam [37]. Because of the simplicity

of its movements, as well as the low energy requirements for digging, the Atlantic

razor clam is a good candidate for biomimicry [42].

The remainder of this chapter explores the fluid and solid mechanics relevant to the

process of soil fluidization, as well as the design decisions that went into creating an E.

directus-inspired digging device. It then describes the testing that was conducted on

the device to validate the soil fluidization model, and discusses insights given by the

results. It concludes with suggestions on how to expand the machine design process

followed in this chapter to other razor clam-inspired work, as well as to broader
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Figure 1-1: E. directus digging pattern. Dashed horizontal line denotes a reference
depth, white arrows denote clam motions, blue shaded area represents fluidized soil
around the animal. A) Reference position before beginning the digging cycle. B)
E. directus extends its foot down prior to moving its valves. C) E. directus moves
its valves slightly up before contraction. D) E. directus contracts its valves, which
fluidizes the soil around it and pushes blood into its foot. E) E. directus's foot pulls
its valves down through the fluidized soil. F) E. directus reopens its valves to begin
another digging cycle, now at a lower depth than in part A.

applications related to soil failure.

1.2 Mechanics of Localized Soil Fluidization

When E. directus contracts its valves, it creates a void in the surrounding area, which

then fills with a mixture of soil and fluid at failure. This mixture is the fluidized

substrate that makes the razor clam able to dig so efficiently. One could imagine

that if the valves were to contract and expand again instantaneously, the substrate

would not have a chance to fail and would instead remain stationary. In this case,

no fluidization would occur and the animal would remain at its original depth. If

the valves were to contract instantaneously and immediately begin to expand again,

the substrate would fluidize during the animal's expansion motion rather than its

contraction motion. In this situation, E. directus would be able to dig, but since

fluidization occurs during expansion, the animal would not have a chance to dig when

11



both its valves are completely contracted and the surrounding substrate is fluidized.

The optimal situation (and the situation seen in E. directus' natural digging pattern)

occurs when the valves do not contract instantaneously, but instead contract at a

speed that allows fluidization to occur at the same time as contraction. In this case,

when contraction is complete, the surrounding substrate is fluidized and the razor

clam is able to fall to a deeper position before expanding its valves again. This

analysis suggests that there is a minimum contraction time necessary for digging, a

point where the fluid is able to advect the soil particles, and thus fluidize the substrate,

as contraction occurs.

To quantify this minimum contraction time, we examine the drag that keeps the

soil particles from fluidizing when contraction occurs. The relevant Reynolds number

for the fluid flowing into the void after contraction is Re - Pfvp , where pf and

pf are the density and viscosity of the fluid, respectively, v, is the velocity of valve

contraction, and dp is the diameter of a soil particle. This Reynolds number varies

between 0.02 and 56 depending on particle size, animal size, and valve contraction

velocity [40]. However, this entire Reynolds number range falls in the domain of Stokes

drag [14]. Using Stokes drag and conservation of momentum, the characteristic time

required for a soil particle to reach the velocity of the advecting fluid (that is, the

minimum contraction time required for fluidization to occur) can be calculated. For

1mm soda lime glass beads (which are similar in size and density to E. directus'

natural environment and will be used to model its environment for the rest of this

chapter), this minimum contraction time is 0.075s [15, 401.

1.3 Materials and Methods

1.3.1 Design of RoboClam

In order to test whether an E. directus-inspired machine would exhibit energy effi-

ciency similar to that of the razor clam, as well as to test the minimum contraction

time for fluidization calculated above, we designed and built RoboClam. The general
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architecture, as well as the digging pattern of RoboClam, is shown in Fig. 1-2. The

machine consists of two pistons, one set concentrically around the other, that connect

to an E. directus-shaped end effector. One piston connects directly to the top of the

end effector and moves it up and down, and the other connects to a wedge inside the

end effector, which translates vertical motion in the piston to horizontal (contrac-

tion/expansion) motion in the end effector. Pneumatics were chosen to control the

pistons so that RoboClam could be safely tested both in real ocean substrates and in

controlled lab environments. Through this pneumatic control system, we are able to

mimic E. directus's digging pattern, as depicted in Figs. 1-2 (C)-(G).

The end effector was designed to be half the size of E. directus, but open twice as

far, to be able to test the effect of in/out displacement on burrowing. It was made

from alloy 932 (SAE 660) bearing bronze and 440C stainless steel, because both

materials are saltwater compatible and have a low coefficient of sliding friction when

lubricated [3]. The angle of the wedge was chosen as 7.13 in order to maximize the

contact lengths and widths between the wedge and the end effector, while allowing

the end effector to maintain its predetermined size. Additionally, the wedge is exactly

constrained and has contact lengths/widths larger than two to prohibit jamming [261.

The geometry and exact constraint of the wedge allow us to measure its efficiency by

measuring the coefficient of friction between the wedge and the sliding rails in the end

effector. This efficiency was found to be 39% [381. During testing, the end effector

was covered with a neoprene boot to prevent soil particles from disturbing the end

effector-wedge interface.

RoboClam's design was optimized to facilitate tracking of the energy expended to

dig into the soil. As the robot digs, the control system tracks the total energy input

to the system by integrating the forces on the pistons over their displacements. This

total input energy, minus the energy lost to friction in the end effector (quantified

by the efficiency of the end effector above) and the energy lost to changes in vertical

position (potential energy), gives the energy used to deform the soil. With this setup,

we are able to keep track of the energy efficiency of RoboClam as it digs, and compare

it to the efficiency of E. directus.

13



A
Upper
piston

In/out
rod

Up/down
rod

Lower
piston

Base

End
effector

C D E F G

I

B I

1mm

Figure 1-2: RoboClam architecture and digging motions. A) RoboClam architecture.

The upper piston moves the end effector in and out; the lower piston moves it up

and down. B) Inset of the end effector. The wedge mechanism connected to the

upper piston translates vertical (piston) motion to horizontal (in/out) motion. C-G)

RoboClam movements, which map to the E. directus motions shown in parts B-F

of Fig. 1-1. Dotted line represents a reference depth, gray areas indicate anticipated

fluidized areas.
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1.3.2 RoboClam Testing

RoboClam was run through a series of tests to validate the minimum localized flu-

idization time calculated in Section 1.2. In these tests, the robot dug under its own

weight (it only contracted and expanded) to minimize variables in the digging pat-

tern. Contraction and expansion times were varied automatically to populate a grid

of experimental in and out times. Contraction time was defined as the time from the

point where the valves began to close to the time when the valves were fully closed.

Expansion time was defined as the time from the end of contraction to the end of

expansion. Thus, in order to vary expansion times, a pause was defined between con-

traction and expansion and was varied to the desired length. Contraction time was

varied by adjusting the pressure in the contracting pneumatic tube using a needle

valve in the path of the tube.

Tests were conducted in a 96 gallon drum filled with 1mm soda lime glass beads

that imitate the coarse sand environment of E. directus. In order to reset the particles

between tests, water was pumped through the bottom of the drum to fluidize the

substrate, then the drum was vibrated to settle the particles.

Each test was analyzed for digging efficiency by calculating the best-fit exponent in

the power law relationship between energy and depth, that is a = E. As mentioned

in Section 1.1, tests that exhibit the efficiency of blunt-body digging are expected to

have an exponent of o = 2, whereas tests where fluidization occurs should have an

exponent of o = 1.

1.4 Results and Discussion

1.4.1 Results

Figure 1-3 shows the initial results from 847 digging tests on RoboClam (A), with

a zoomed in version of the results for shorter contraction times (B). Contraction

time was varied from approximately 0.05s to 1.5s, and expansion time was varied

from about 0.05s to 4s. One can see that though the power law exponent tends to

15
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showing more detail on the Measured Inward Time axis. For each test, the end

effector contracted and expanded at desired timescales, and the robot dug under its

own weight. Tests were analyzed for the power law exponent, a, with an exponent of

1.0 corresponding to fluidized digging and 2.0 corresponding to blunt body digging.
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increase as the contraction time increases (and gets further away from tmi = 0.075s),

it never gets close to a = 2, an inefficient/blunt body exponent. These results give the

impression that fluidization will occur regardless of contraction and expansion times,

that the RoboClam method of digging is more efficient than blunt body digging for

any timescale. However, we can instinctively hypothesize that there must be some

point at which RoboClam is no more effective at digging than a blunt body: if the end

effector were to contract slowly enough, the substrate would collapse as contraction

occurred, and there would be no void in which fluidization could occur. Thus, we

hypothesized that there was another phenomenon at work.

Since these results were obtained in a drum full of beads that were reset between

tests, rather than in an untouched ocean environment, we concluded that our bead

resetting methods likely did not completely resettle the beads. That is, the fluidization

and vibration used to reset the beads might have left them less packed than they would

have been in an undisturbed environment. Such a situation would make it easier to

dig into the beads than expected, and would skew results towards fluidization, as

seems to have occurred in Fig. 1-3.

To correct for this bias, we redefined what was considered a blunt body test.

Rather than relying on the theory from Section 1.1, which posited that pushing a

blunt body into soil would result in a power law exponent of 2, we measured the

power law exponent specific to our experimental setup. We ran 15 tests where we

reset the beads using the fluidization and vibration techniques used in the other tests,

then directly pushed the end effector into the beads. We measured the insertion force

required from 0.025m to 0.175m deep, in 0.025m increments. We then calculated the

power law exponent for each run, and got an average exponent of 1.62. Thus, we

normalized the tests in Fig. 1-3 to a blunt body exponent of 1.62.

Figure 1-4 shows the results from Fig. 1-3 normalized to a blunt body exponent

of 1.62. We once again see that digging efficiency tends to start off high for fast

contraction times and drop off as we move farther to the right. However, with the

normalization, some tests do reach close to blunt body efficiency status, shown as red

dots. Therefore, we are more able to recognize patterns across the grid and distinguish

17
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between efficient and inefficient tests.

1.4.2 Discussion

We can see in Fig. 1-4 that most tests around the minimum contraction time tmin of

0.075s are green and thus exhibit fluidization, though there are some tests even below

this supposed minimum that also have low a. These results suggest that tmin is not

a hard cutoff for localized fluidization, but rather a guideline for how quickly a razor

clam-inspired machine should aim to contract to dig efficiently: if a machine is able to

contract this quickly, we can expect it to achieve localized fluidization. The dropoff

of efficiency after tmin = 0.075s also validates the theory, derived in Section 1.2, that

fluidization optimally occurs for a contraction time of approximately 0.075s. Longer

contraction times might still exhibit some fluidization, but times closer to tmin are

preferred.

We can also observe from Fig. 1-4 that vertical lines of dots tend to exhibit ap-

proximately the same amount of fluidization. For example, for a contraction time of

tmin = 0.075s, the power law exponent remains at about 1.1 throughout the expansion

time range of 0.05s to 3.8s. In other words, there is a much larger range of accept-

able expansion times than of acceptable contraction times. This phenomenon can

be explained by analyzing settling time after contraction. The relevance of settling

time can be understood intuitively: if we waited too long between contraction and

expansion, the soil would settle completely, and rather than expanding back into a

fluidized unpacked mixture, RoboClam would have to expand into a packed bed of

soil. This expansion would cost much more energy than expansion into a fluidized

body and would result in inefficient tests.

To calculate settling time, we first look at the settling velocity of a suspension of

particles in fluid [22]:

V. = t (1.1)

Here, vt is the terminal velocity of a single particle in an infinite fluid, # is the
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void fraction of the substrate (the fraction by volume that consists of fluid or air

rather than particles), and n is derived from the Archimedes number [12, 41]. As

the particles settle, the void fraction will decrease, and thus the settling velocity will

decrease. However, to achieve a conservative estimate for settling time, we will keep

the settling velocity constant using the initial void fraction of the substrate.

The minimum void fraction required to achieve fluidization, #fluid, is approxi-

mately 0.41 for round particles [35]. The void fraction of settled particles for the

1mm soda lime glass beads we used is ,kettae = 0.38. If we define the height of the

fluidized region of the substrate as hfl.id, we can define the settled height as

hsettie = luid hfl.id. (1.2)
1 - #settIle

Combining Eqs. 1.1 and 1.2, we can find the settling time

tsettle = hi id - hsete (1.3)

Using 1mm soda lime glass beads and defining hfluid as the height of the end effector

in Eq. 1.3 yields tsettle = 2.2s. Again, this is a conservative estimate because v. was

defined based on only the fluidized void fraction, so the actual settling time will be

longer. Much like was discussed for the minimum contraction time tmin, this timescale

is a guideline for design rather than a hard stop. The important point to note is that

tsettle is orders of magnitude greater than tmn, which suggests that when designing

a RoboClam-like machine, there is much more leeway in expansion times that will

achieve fluidization than in contraction times.

1.5 Conclusions

This chapter presents a framework for designing a robot that digs efficiently by achiev-

ing localized fluidization. RoboClam is a device that imitates E. directus's digging

pattern and shows that it is possible to dig efficiently like the razor clam. This robot

gives an example of an architecture that can measure the energy used to deform soil,
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and thus calculate the energy efficiency of different digging patterns. It also validates

the timescale guidelines for efficient digging generated by theory of fluidization and of

soil settling. Using the guidelines given in this chapter, a RoboClam-like device can

be designed for different size scales and soil types depending on the usage scenario.

Additionally, the digging timescale theory in this chapter allows a designer to create

another architecture that exploits the same mechanics to achieve efficient burrowing

for a variety of engineering applications.
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Chapter 2

A Theoretical Investigation of the

Critical Timescales Needed to Dig in

Dry Soil

2.1 Introduction

As mentioned in Section 1.1, there are several engineering applications that would

benefit from an energy-efficient method for burrowing into soil, including sensor place-

ment, oil recovery, anchoring, cable installation, and mine detonation. The need for

an efficient digging method stems from the fact that digging into granular media using

blunt force is difficult: the frictional forces between soil particles increase linearly with

depth [281, so the insertion force F(z) required at depth z increases linearly as well

[231. Therefore, the insertion energy E = f F(z)dz to reach a particular depth scales

with depth squared [43], which can be a costly energy sum for many applications.

Past work in digging method optimization has been split into two factions: digging

in dry soil and in wet soil. Dry soil work has focused on bulldozer-like bucket-based

excavation methods [17, 16], whereas wet soil work has experimented with biomimicry

as a way to explore more localized, efficient burrowing methods [43, 44, 401. This

chapter will expand upon the wet soil biomimicry approach and assess its applicability
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to dry soil.

2.1.1 Digging methods in the animal world

Many animals have developed methods of digging in soil that take advantage of their

skills and the particularities of their environments [13, 24, 32, 33, 361. A few meth-

ods used by animals to dig into wet soil were outlined in Section 1.1. In dry soil,

several species use their paws to dig large, complex burrows. These include the aard-

vark (Orycteropus afer) in southern Africa [27], the plains vizcacha (L. maxiumus) in

Argentina [191, the prairie dog (C. leucunis) in North America [25], and the Testu-

dinidae (gopher tortoises), also in North America [7]. Other animals use more unique

tactics: for example, the bullsnake (P. m. sayi) spades sand with its snout to loosen

it, then scoops and dumps it away from the digging site, effectively working like a

bulldozer [41, whereas the sandfish lizard (S. scincus) undulates like a fish to "swim"

through sand [181.

2.1.2 E. directus and RoboClam

The Atlantic razor clam (E. directus), introduced in Section 1.1, digs vertically into

wet soil by using a sequence of up/in/down/out motions (Fig. 1-1). It was selected as

a good candidate for biomimicry because of its simplicity and its energetic efficiency:

it can only produce about 1ON of force at a time, but is able to dig at 0.27 J/cm

[311, which equates to being able to dig half a kilometer using the energy of an AA

battery [6]. If 1ON of force were used to push a blunt body the size of the clam,

it would only be able to dig 1-2cm deep [41], however, razor clams can dig up to

70cm [8, 431. E. directus is able to achieve these efficiency levels through localized

fluidization: after contraction, the soil and water around it mix in the remaining void,

creating a substance that behaves as a viscous Newtonian fluid rather than a granular

solid [11, 41]. This phenomenon results in drastic drag and energy reductions for the

razor clam [37].

RoboClam is a robot, depicted in Figure 1-2, that imitates the valve motion
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pattern of E. directus. It consists of an end effector, which moves in and out like the

animal, and a pneumatic actuating system that controls two pistons, one for in/out

motion and the other for up/down motion. Tests have shown that it successfully

imitates E. directus: it fluidizes the soil around it to be able to burrow using an order

of magnitude less energy than would be required for blunt body pushing [43].

2.1.3 Wet soil timescale analysis

The minimum and maximum contraction and expansion times required for R.oboClam

to achieve fluidization in wet soil have been reported in prior work [43], as well

as in Chapter 1. Minimum contraction time is determined by Stokes drag [14], or

the amount of time it takes the fluid to advect a soil particle and reach the valve

contraction velocity. This timescale depends on the density and diameter of the soil

particles, as well as the density of the fluid. RoboClam uses 1mm diameter glass

beads (which have similar properties to sand [15]) submerged in water, which yields

a minimum contraction time of 0.075s [43].

The maximum contraction time is the time it would take the soil to naturally

collapse and landslide around the contracted body. This timescale depends on the

density of the soil particles and of the fluid, the void fraction of the soil (the volume

fraction that is taken up by fluid rather than by particles), the failure angle of the soil

(the angle at which it will naturally landslide), and the distance the soil must slide

(the contraction length of the mechanism). Again using 1mm glass beads submerged

in water, and using the contraction length of the current RoboClam end effector

(0.00285m), we get a maximum contraction time of 0.20s 43].

Lastly, the maximum expansion time is the amount of time it would take the soil

to settle after contraction. Settling time is determined by the height of the contracting

mechanism and the void fraction of the soil [22]. Assuming 1mm glass beads and the

current dimensions of the RoboClam end effector, this analysis yields a maximum

expansion time of 2.2s [43].
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2.1.4 Changes in dry soil

These timescale analyses apply to saturated soil, but there are several changes that

occur when the biomimetic approach is expanded to dry soil. First, the interstitial

air exerts much less drag on the collapsing particles than water, making it unable to

advect the particles into the void around the contracting device. Second, the change

in void fraction makeup will make the settling time for dry soil much faster than for

submerged soil. These two changes make the above fluidization theory invalid, so in

order to have a RoboClam-like device dig into dry soil, a new theoretical approach

must be developed. This chapter describes such a theoretical approach and shows

that RoboClam's motions can be used to dig into dry soil within a range of time

scales achievable by a machine.

2.2 Model

Our model first analyzes the soil around the collapsing mechanism to find a situation

in which dry soil would be easy to dig through. It then determines how to reach this

point, analyzing the ways in which the soil could collapse and calculating the range

of contraction timescales necessary to dig through dry soil for each collapse case.

2.2.1 Stress state analysis

We first analyze the stress state of a cylindrical block of soil around the end effector

before and after contraction. Figure 2-1 shows a Mohr's circle analysis of the initial

stress state of the soil. There is an initial vertical effective stress, o', and an initial

horizontal (radial) effective stress, aoj, which together define the Mohr's circle, or the

complete stress state. Effective stress refers to the actual stress between particles,

neglecting hydrostatic pressure. Additionally, Figure 2-1 shows the incipient failure

stress state of the soil, which is defined as the point at which slow contraction would

result in soil collapse, or failure. Soil failure occurs when the Mohr's circle of the soil

hits the soil's failure envelope (which is determined by <, the friction angle of that
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particular soil), because at this point the shear force in the soil has exceeded the shear

strength of the soil [15]. As the end effector contracts, the horizontal stress decreases

but the vertical stress stays the same. This is because the vertical stress is defined

solely by the mass of the soil above it, which does not change [15]. The decreasing

horizontal stress causes the Mohr's circle to enlarge until it becomes tangent to the

failure envelope, at which point the soil starts to fail. If a device were to contract

slowly, the soil around it would fail when the horizontal stress reached a'h.

Incipient
failure

hf ho VO

Figure 2-1: Initial stress state of soil (denoted by a solid line), and incipient failure

stress state, denoted by the dotted line. The incipient failure state is found by de-

creasing the horizontal stress until the failure state is tangent to the stress envelope,
and corresponds to the moment at which the soil starts to collapse around a mecha-

nism that has just contracted. Labels: r is shear stress, o is normal stress, < is the

friction angle of the soil; subscripts h and v are horizontal and vertical, respectively;

subscript 0 indicates initial state; subscript f indicates failure state; and superscript

prime indicates effective stress, which are the actual stresses between soil particles

(neglecting hydrostatic pressure)

Figure 2-2 shows an analysis of a rapidly contracting device. If a mechanism were

to contract quickly enough to bring the horizontal stress state close to zero, then the

corresponding Mohr's circle would have a vertical stress state close to zero as well. It

is impossible for a soil to exist in a stress state where the Mohr's circle goes beyond

the failure envelope, so the resulting Mohr's circle must be tangent to the failure
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envelope. This imbalance of vertical and horizontal stresses resembles the stress state

of the soil at ground level, where there is no soil above the end effector, and thus it is

easy to dig. If a device is able to contract quickly enough to achieve this zero-stress

state, then it will be able to easily penetrate dry soil no matter how deep it is. From

an engineering perspective, it is important to determine how quickly the contraction

must occur in order to achieve this zero-stress state. In order to answer this question,

the different mechanisms of soil failure must be investigated.

Incipient
failure

Figure 2-2: Zero-stress state induced by reducing horizontal stress below incipient
failure. As the horizontal stress decreases along the purple arrow, the failure circle
shrinks until both the vertical and horizontal stresses are near zero, mimicking the
stress state the soil experiences at ground level. Initial stress state and incipient
failure circle are included for reference.

2.2.2 Modes of soil collapse

There are two kinds of soil collapse that can occur around a contracting RoboClam-

like device. We will analyze them both by looking at the collapsing soil in a cylindrical

coordinate system. Figure 2-3 shows the Mohr's circle representation of both failure

scenarios: a radial-vertical stress imbalance and a radial-hoop stress imbalance 139].

In each of these cases, we observe a cylindrical body of soil surrounding the mech-
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Radial-hoop
failure

Radial-vertical
failure

Figure 2-3: Failure scenarios in soil collapsing around RoboClam. The dotted red line
denotes the initial stress state of the soil from a radial-vertical perspective. There
is a radial (horizontal) stress and a vertical stress. If the vertical stress remains
constant while the radial stress decreases until the Mohr's circle is tangent to the
failure envelope, then we achieve failure by a radial-vertical stress imbalance. The
blue dot denotes the initial stress state of the soil from a radial-hoop perspective.
The radial and hoop stresses are equal to the horizontal stress. If the radial stress
decreases and the hoop stress increases until the Mohr's circle is tangent to the failure
envelope, then we achieve a radial-hoop stress imbalance.

anism the instant after contraction. In the radial-vertical case, failure occurs because

the radial stress decreases to the point where the radial-vertical Mohr's circle is tan-

gent to the failure envelope. The vertical stress does not change during this period

because it is only defined by the amount of soil above the end effector, which remains

the same. This failure mode can be likened to a "landslide" collapse around the de-

vice, where soil slides diagonally into the void left by the contracting mechanism (Fig

2-4).

In the radial-hoop case, failure occurs because the radial and hoop stresses (which

are both equal to the horizontal stress before contraction) diverge to the point where

the radial-hoop Mohr's circle touches the failure envelope. That is, the radial stress,

which decreases after the device contracts, and the hoop stress, which increases after

the device contracts, together define a Mohr's circle that is tangent to the failure
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Af
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Figure 2-4: Progression of radial-vertical failure, or "landslide" collapse, side view.
The end effector contracts as denoted by the red arrows in step A, leaving a void
around it in step B. Between steps B and C, the soil falls along the failure angle Of
as denoted by the red arrows in step B. In step C, the soil around the void has fallen
diagonally to fill the void.

envelope. This failure mode can be likened to "annular" collapse around the device,

where, when looked at from above, a "ring" of soil collapses simultaneously to fill the

void left by the contracting device (Fig 2-5).

Figure 2-5: Progression of radial-hoop failure, or "annular" collapse, top view. The
end effector contracts as shown by the red arrows in step A, leaving a void around it
in step B. In between steps B and C, the soil around the void collapses radially, as
denoted by the red arrows in step B. In step C, the ring of soil around the void has
collapsed and filled the void.
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2.2.3 Collapsing soil modeled as a thick-walled pressure vessel

In order to quantify the physics of the soil collapse, we propose a thick-walled pressure

vessel model for the collapsing soil. To simplify the analysis, a few assumptions are

made: first, we assume the mechanism is infinitely long in order to neglect end effects.

Second, we assume that the depth of the mechanism is much gTeater than its length

(h >> L) in order to consider stresses along the length of the device to be uniform.

Lastly, we assume that the device contraction is quasi-static and that the soil can

be modeled as an elastic solid since it is not being sheared and plastically deforming

before contraction. These three assumptions allow us to model the collapsing soil

around the contracting device, at the moment just before failure, as a thick-walled

pressure vessel [40].

As mentioned above, the thick-walled pressure vessel model will only hold for a

linear elastic solid. This is only true of the soil before it begins to shear due to failure,

so we model the soil as a pressure vessel only for the instant just after contraction,

but before failure. This analysis will allow us to determine the size of the cylinder of

soil that will fail around the contracting device. Figure 2-6 shows a diagram of the

thick-walled pressure vessel model. The contracting mechanism is shown in dark gray

as having just contracted, with a failure zone denoted in blue around it. The pressure

vessel is the substrate around the failure zone, shown in yellow, spanning from the

outer edge of the failure zone to the edge of soil failure an unknown distance away.

Since the mechanism has just contracted, the outer edge of the pressure vessel has

not yet felt the effects of the change in pressure on the inner edge of the vessel. Thus,

the stress state of the soil on the outer edge of the vessel can be likened to the stress

state of soil at an undisturbed point an infinite horizontal distance away. Starting

with the standard thick-walled pressure vessel equations [29], and modifying them to

reflect geotechnical convention (where compressive stresses are positive) and an outer

radius that approaches infinity (to represent the undisturbed soil at the outer edge

of the pressure vessel, some unknown distance away), we get

2 (p, oO~r = RO(p2 - + P O (2.1)
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O -RO(pi - po) +PO
r 2 (2.2)

where a, is the radial stress, o is the hoop stress, RO is the radius of the expanded

mechanism, pi is the pressure in the void, and po is the lateral pressure of the undis-

turbed soil at infinity, which is equal to the initial horizontal pressure of the soil before

contraction.

Substrate

PP 0

Figure 2-6: Collapsing soil modeled as a thick-walled pressure vessel. The RoboClam
mechanism is shown in gray as having just contracted, with the void around it marked
in blue as the failure zone. The soil is around the failure zone in yellow. Labels: Ro is
the radius of the expanded mechanism, RE is the radius of the contracted mechanism,
L is the length of the mechanism, pi is the pressure in the failure zone, and po is the
lateral pressure of the undisturbed soil (the soil that will not collapse) at infinity.

Combining Eqns. (2.1) and (2.2) with the definitions of vertical and horizontal

effective stress, as well as the definitions of soil properties KO and Ka, results in ex-

pressions for the failure radii Rfrv and RfrO as functions of the radius of the expanded

end effector [40]:
Rfrv

ft0

Pi - Po

(- - (po - U)
(2.3)
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Rfro _ (Ka + i)(p- - P0) (2.4)
Ro - (Ka - 1)(P0  - )

The failure radii, Rf,, and RfO, are the radial distances at which failure occurs

for landslide and annular collapse, respectively. In other words, these are the outer

radii of the thick-walled pressure vessel, or the distances beyond which the soil is no

longer affected by the mechanism's collapse. Ka and KO are the coefficient of active

failure and the coefficient of lateral earth pressure of the soil, respectively, which are

both commonly measured soil properties. u is the pore pressure, caused by the fluid

between the soil particles in the general case. However, since we are working with

dry soil, u = 0, and since our model assumes that the mechanism has just contracted,

pi = 0. With these two assumptions, Eqns. (2.3) and (2.4) simplify to:

Rfrv _(2.5)
Ro-

Rfro _ K 1(2.6)
Ro 1 - K(

2.2.4 Dominant failure mechanism

Using Eqns. (2.5) and (2.6), we can find the characteristic radius within which the soil

collapses for both the landslide and annular case for any soil for which we know KO and

Ka. In general, these characteristic radii will be different, meaning that landslide and

annular collapse will occur within different volumes of soil. If the landslide radius is

bigger, then annular collapse will occur within the volume of soil undergoing landslide

collapse, and vice versa. Therefore, whichever radius is larger will correspond to the

radius of total affected soil. We will call this larger radius the radius of the dominant

failure mechanism. We can divide Eqn. (2.5) by Eqn. (2.6) to get the ratio of the

landslide collapse radius to the annular collapse radius

RfrV K - 1(2.7)
Rfro - (A - 1)(Ka + 1)
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If this ratio is greater than one, landslide collapse dominates. If it is less than one,

annular collapse dominates. Figure 2-7 shows a plot of the ratio for a range of Ko and

Ka values. Generally, for values of KO under about 0.6, landslide collapse dominates,

whereas for values of KO above 0.6, annular collapse dominates.

1
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0.5

0.4

0.2 0.25 0.3 0.35 0.4 0.45 0.5
K a

1.15

1.1

1.05

Figure 2-7: Dominant failure mechanism graph. Values greater than 1 (shaded yellow
to green) indicate landslide collapse dominance, whereas values less than 1 (shaded
green to blue) indicate annular collapse dominance. The bottom corner indicates
an imaginary section, where combinations of KO and Ka values are not physically
possible.

This analysis raises the question of whether there is a correlation between KO and

Ka values that would allow us to focus on certain areas of Fig. 2-7. Ka is defined by

the geometry of Mohr's circle at failure, and can be expressed in terms of the soil's

friction angle 0 [15]:

Ka - 1 - sin#
1 + sino

(2.8)

Additionally, there are two correlations for KO that have been experimentally de-

termined and are generally accepted by the geotechnical community: one for normally

consolidated soils (which have never experienced stresses larger than the ones they are
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currently experiencing) and one for overconsolidated soils (which have been loaded

and then unloaded, for example the soil beneath glaciers that have since melted).

The normally consolidated correlation is expressed as [9J

AO(NC) = 1 - sin' (2.9)

where Ko(NC) is the normally consolidated coefficient of lateral pressure. The corre-

lation for overconsolidated soil is expressed as [201

KooC) = Ko(NC) * OCRn.0 (2.10)

where Ko(oC) is the overconsolidated coefficient of lateral pressure, and OCR is the

overconsolidation ratio, or the ratio of the maximum past stress experienced to the

present stress experienced.

Since Eqns. (2.8), (2.9), and (2.10) are all in terms of the friction angle 0, we

can combine them to find correlations between Ko and Ka and overlay them on

the plot in Fig. 2-7. Figure 2-8 shows the dominant failure mechanism graph with

K 0 - Ka correlations overlain for normally consolidated soil (NC) and for soil with

overconsolidation ratios (OCR) of two, three, four, and five.

Figure 2-8 shows that in general, landslide collapse is dominant for normally con-

solidated soils, whereas annular collapse is dominant for overconsolidated soils. Since

both modes of collapse are potentially relevant, we will determine how quickly col-

lapse occurs in each case (and thus discover how quickly a mechanism must contract

to achieve a zero-stress state).

2.2.5 Landslide collapse analysis

Figure 2-9 shows a free body diagram of a representative block of soil that would

slide diagonally in landslide collapse. To determine the time it will take the soil block

to move a horizontal distance of 6 (the device contraction distance), the shear and

normal stresses on the diagonal plane can be reduced to a horizontal stress of ohf.
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Figure 2-8: Dominant failure mechanism graph with KO - Ka correlations. Correla-
tions are overlain for normally consolidated soil as well as for soil with overconsolida-
tion ratios of two, three, four, and five.

This stress can be expressed as [381

f = Kagh(1 - b)(pp - pf) (2.11)

where g is the gravitational constant, <1 is the void fraction of the soil, or the fraction

of the soil volume that is made up of air or fluid rather than of soil particles, p, is the

density of the soil particles, and pf is the density of the fluid in the general case. This

horizontal stress acts on a projected vertical area of h * w, resulting in a horizontal

force of

FH = Kagh(1 - 4,)(pp - pf)hw. (2.12)

Furthermore, the mass of the block is defined as

1
m = -lhw[pp(1 - 4D) + pf4]. (2.13)

2
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Figure 2-9: Free body diagram of a block of soil about to undergo landslide collapse.
Labels: Of is the failure surface angle, m is the mass of the block of soil, g is the
gravitational constant, and a are the effective shear stress at failure and the
effective vertical stress at failure, respectively, and 1, w, and h are the arbitrary
dimensions of the block of soil.

Using basic kinematics and assuming an initial velocity of zero for the block of soil,

the time to move a distance 6 is

2 F 6ma FH

6(p,(1 -- O) + pf 1 )
Kag(1 - J )(pp - pf)tanOf

(2.14)

For dry soil, we can assume that pf =0, which simplifies Eqn. (2.14) to

6
t =KagtanOf

(2.15)

The failure surface angle can be derived from the geometry of Mohr's circle and is

defined as [40]

f = + (2.16)
4 2

Using Eqns. (2.15), (2.8), and (2.16), as well as 6 0.0048m (the contraction distance

for the existing RoboClam end effector), we can find a range of possible values for

landslide collapse time in typical soils. Soils can typically have a friction angle 0

ranging from 17 very weak soils) to 45 very strong soils) [21]. This friction angle
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range corresponds to a landslide collapse time range of 0.0198s to 0.0266s for the

current RoboClam end effector dimensions. RoboClam runs on a pneumatic control

system that can contract on the order of 0.03s, so this timescale range is a little faster

than what is achievable with the current setup, but is feasible.

2.2.6 Annular collapse analysis

Figure 2-10A shows the top view of a block of soil about to undergo annular collapse.

Similarly to the landslide case, there is an effective horizontal stress acting on one

side and zero horizontal stress acting on the other. Additionally, there is a frictional

force acting on the top and bottom of the soil block as it slides into the void (Fig.

2-10B). Figure 2-10C shows a differential angular element of soil about to undergo

annular collapse, with the shear and normal forces labeled.

We use a Mohr's circle analysis with a radial-vertical reference frame to quantify

the shear stress that corresponds to this state of annular collapse. We know the

vertical and radial effective stresses at collapse, defined as

orf = pgh (2.17)

-,f Kapgh (2.18)

Since the soil is at failure, the Mohr's circle will be tangent to the failure envelope.

The Mohr's circle must be centered about the midpoint between off and O-,.f, such that

they will both correspond to the same shear stress value. These three qualifications

define the Mohr's circle that gives the shear stress encountered in annular collapse

(Fig. 2-11).

Geometrical analysis of Figure 2-11, coupled with Eqns. (2.17) and (2.18), yield

the following value for rj:

S=pgh Ka - 7cos 2 (1 + Ka)2  (2.19)

Using Eqn. (2.19) as the shear force in the free body diagram in Figure 10C and

38



A

B C

h

friction dz ~

z +Kpgh
L Kpgh

Figure 2-10: Visualizations of annular collapse. A) Top view of a block of soil about

to undergo annular collapse. The mechanism has just contracted a distance of 6,

leaving a void with a horizontal effective stress of zero. At the edge of the affected

soil, the horizontal effective stress is defined as Ka multiplied by the vertical effective

stress. B) Side view of the mechanism after contraction. The block of soil that will

undergo annular collapse is marked in yellow. There are frictional forces caused by

the stationary soil above and below the block that oppose the motion. C) Free body

diagram of a differential angular element of soil before annular collapse, with the

unknown shear force T labeled. L is the characteristic length of soil collapse, or the

distance from the mechanism to the edge of the affected soil mass.

plugging in z as the length of the contracting mechanism yields the following sum of

forces:

EFH= KapghzLdO - 2 ( 2 L2dO) (pgh xKa - 1cos24(1 + Ka)2) (2.20)

Again using basic kinematics and assuming an initial velocity of zero for the block of
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Figure 2-11: Mohr's circle analysis used to determine the shear stress encountered

in annular collapse. The known radial and vertical effective stresses at collapse are

plotted, and the midpoint between them is defined as the center of the circle. The

Mohr's circle is then defined as the circle tangent to the failure envelope, centered at

that point. The frictional shear stress, which we are looking for, is the stress that

corresponds to both the radial and vertical effective stresses on this circle.

soil, as was done in the landslide case, results in:

t = z6L (2.21)
a \ghKaz - Lgh Ka - cos20(1+ Ka)2

This expression for collapse time depends on L, the characteristic length of the block

of soil that undergoes annular collapse. This length is equivalent to RfrO, which

was defined in Eqn. (2.6) as a function of expanded end effector radius. Plotting

Equation (2.6) for the same values of KO and Ka that were used in Figs. 2-7 and 2-8,

and overlaying the normally consolidated and overconsolidated KO - Ka correlations,

results in Fig. 2-12.

Figure 2-12 shows that RfrO is between RO and 2RO for all possible values of KO

and Ka, regardless of soil overconsolidation ratio. As a result, substituting L = RO

and L = 2RO into Equation (2.21) yields a range of possible timescales for annular

collapse. Using Ka=0.33 (a typical value for soil) and h=0.5m results in an annular
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Figure 2-12: Characteristic radius of annular collapse graph. Ko - Ka correlations
are overlain for normally consolidated and overconsolidated soil.

collapse time range of 0.0044s to 0.0080s, which is an order of magnitude smaller

than the times found for landslide collapse. Additionally, the times scale with 1, so

if the depth is increased from one-half to one meter, the timescale range decreases

to 0.0032s to 0.0056s. These contraction times are not achievable with the current

RoboClam setup, and would be difficult to achieve with similar devices.

2.3 Conclusions

For a RoboClam-like device to achieve a zero-stress state in dry soil in a landslide

collapse-dominated environment, it must contract in about 0.02 seconds, regardless

of soil depth. Alternatively, in an annular collapse-dominated environment, it must

contract in about 0.004 seconds at a half-meter depth, with the required contraction

time shortening as the mechanism goes deeper. Even just at h = 0.5m, this is an

order of magnitude more quickly than in the landslide case. Though 0.02 seconds is
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within the realm of possible contraction times for a mechanism similar to RoboClam,

0.004 seconds is too fast to reach with such a device. Therefore, an E. directus-

inspired machine is a feasible digging strategy for landslide-dominated soils, but not

for annular-dominated soils. Based on Fig. 8, in general, normally consolidated soils

and overconsolidated soils with very small OCRs are landslide-dominated. Thus,

digging in dry soil with a device similar to RoboClam is feasible, but only for soils

that have not experienced pressures much larger than the pressures they experience

at the time of digging. Further work is needed to experimentally verify these results,

but theoretically, it is plausible for RoboClam burrowing technology to be adapted

to dry soil applications.
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