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Abstract

Autonomous agents operating in partially observable
stochastic environments often face the problem of op-
timizing expected performance while bounding the
risk of violating safety constraints. Such problems
can be modeled as chance-constrained POMDP’s (CC-
POMDP’s). Our first contribution is a systematic deriva-
tion of execution risk in POMDP domains, which im-
proves upon how chance constraints are handled in
the constrained POMDP literature. Second, we present
RAO∗, a heuristic forward search algorithm producing
optimal, deterministic, finite-horizon policies for CC-
POMDP’s. In addition to the utility heuristic, RAO∗

leverages an admissible execution risk heuristic to
quickly detect and prune overly-risky policy branches.
Third, we demonstrate the usefulness of RAO∗ in two
challenging domains of practical interest: power supply
restoration and autonomous science agents.

1 Introduction
Partially Observable Markov Decision Processes (POMDPs)
(Smallwood and Sondik 1973) have become one of the most
popular frameworks for optimal planning under actuator
and sensor uncertainty, where POMDP solvers find policies
that maximize some measure of expected utility (Kaelbling,
Littman, and Cassandra 1998; Silver and Veness 2010).

In many application domains, however, performance is
not enough. Critical missions in real-world scenarios require
agents to develop a keen sensitivity to risk, which needs
to be traded-off against utility. For instance, a search and
rescue drone should maximize the value of the information
gathered, subject to safety constraints such as avoiding dan-
gerous areas and keeping sufficient battery levels. In these
domains, autonomous agents should seek to optimize ex-
pected reward while remaining safe by deliberately keeping
the probability of violating one or more constraints within
acceptable levels. A bound on the probability of violating
constraints is called a chance constraint (Birge and Lou-
veaux 1997). Unsurprisingly, attempting to model chance
constraints as negative rewards leads to models that are over-
sensitive to the particular penalty value chosen, and to poli-
cies that are overly risk-averse or overly risk-taking (Undurti
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and How 2010). Therefore, to accommodate the aforemen-
tioned scenarios, new models and algorithms for constrained
MDPs have started to emerge, which handle chance con-
straints explicitly.

Research has mostly focused on fully observable con-
strained MDPs, for which non-trivial theoretical properties
are known (Altman 1999; Feinberg and Shwarz 1995). Ex-
isting algorithms cover an interesting spectrum of chance
constraints over secondary objectives or even execution
paths, e.g., (Dolgov and Durfee 2005; Hou, Yeoh, and
Varakantham 2014; Teichteil-Königsbuch 2012). For con-
strained POMDPs (C-POMDP’s), the state of the art is less
mature. It includes a few suboptimal or approximate meth-
ods based on extensions of dynamic programming (Isom,
Meyn, and Braatz 2008), point-based value iteration (Kim
et al. 2011), approximate linear programming (Poupart et
al. 2015), or on-line search (Undurti and How 2010). More-
over, as we later show, the modeling of chance constraints
through unit costs in the C-POMDP literature has a number
of shortcomings.

Our first contribution is a systematic derivation of the ex-
ecution risk in POMDP domains, and how it can be used to
enforce different types of chance constraints. A second con-
tributions is Risk-bounded AO∗ (RAO∗), a new algorithm
for solving chance-constrained POMDPs (CC-POMDPs)
that harnesses the power of heuristic forward search in
belief space (Washington 1996; Bonet and Geffner 2000;
Szer, Charpillet, and Zilberstein 2005; Bonet and Geffner
2009). Similar to AO∗ (Nilsson 1982), RAO∗ guides the
search towards promising policies w.r.t. reward using an ad-
missible heuristic. In addition, RAO∗ leverages a second ad-
missible heuristic to propagate execution risk upper bounds
at each search node, allowing it to identify and prune overly
risky paths as the search proceeds. We demonstrate the use-
fulness of RAO∗ in two risk-sensitive domains of practical
interest: automated power supply restoration (PSR) and au-
tonomous science agents (SA).

RAO∗ returns policies maximizing expected cumulative
reward among the set of deterministic, finite-horizon poli-
cies satisfying the chance constraints. Even though opti-
mal CC-(PO)MDPs policies may, in general, require some
limited amount of randomization (Altman 1999), we fol-
low Dolgov and Durfee (2005) in deliberately develop-
ing an approach focused on deterministic policies for sev-



eral reasons. First, deterministic policies can be effectively
solved through heuristic forward search (Section 4). Sec-
ond, computing randomized policies for C-POMDP’s gen-
erally involves intractable formulations over all reachable
beliefs, and current approximate methods (Kim et al. 2011;
Poupart et al. 2015) do not guarantee solution feasibility.
Finally, there is the human aspect that users rarely trust
stochasticity when dealing with safety-critical systems.

The paper is organized as follows. Section 2 formulates
the type of CC-POMDPs we consider, and details how
RAO∗ computes execution risks and propagates risk bounds
forward. Next, Section 3 discusses shortcomings related to
the treatment of chance constraints in the C-POMDP liter-
ature. Section 4 presents the RAO∗ algorithm, followed by
our experiments in Section 5, and conclusions in Section 6.

2 Problem formulation
When the true state of the system is hidden, one can only
maintain a probability distribution (a.k.a. belief state) over
the possible states of the system at any given point in time.
For that, let b̂k : S→[0, 1] denote the posterior belief state
at the k-th time step. A belief state at time k + 1 that only
incorporates information about the most recent action ak is
called a prior belief state and denoted by b̄(sk+1|ak). If, be-
sides ak, the belief state also incorporates knowledge from
the most recent observation ok+1, we call it a posterior be-
lief state and denote it by b̂(sk+1|ak, ok+1).

Many applications in which an agent is trying to act under
uncertainty while optimizing some measure of performance
can be adequately framed as instances of Partially Observ-
able Markov Decision Processes (POMDP) (Smallwood and
Sondik 1973). Here, we focus on the case where there is a
finite policy execution horizon h, after which the system per-
forms a deterministic transition to an absorbing state.
Definition 1 (Finite-horizon POMDP). A FH-POMDP is a
tuple H = 〈S,A,O, T,O,R, b0, h〉, where S is a set of
states; A is a set of actions; O is a set of observations;
T : S × A × S → R is a stochastic state transition func-
tion; O : S × O → R is a stochastic observation function;
R : S × A → R is a reward function; b0 is the initial belief
state; and h is the execution horizon.

An FH-POMDP solution is a policy π : B→A mapping
beliefs to actions. An optimal policy π∗ is such that

π∗ = arg max
π

E

[
h∑
t=0

R(st, at)
∣∣∣π] . (1)

In this work, we focus on the particular case of discrete
S, A, O, and deterministic optimal policies. Beliefs can be
recursively computed as follows:

b̄(sk+1|ak)= Pr(sk+1|b̂k, ak)=
∑
sk

T (sk, ak, sk+1)b̂(sk) (2)

b̂(sk+1|ak, ok+1)= Pr(sk+1|b̂k, ak, ok+1),

=
1

η
O(sk+1, ok+1)b̄(sk+1|ak), (3)

where T and O are from Definition 1, and
η = Pr(ok+1|ak, bk)=

∑
sk+1

O(sk+1, ok+1)b̄(sk+1|ak) (4)

is the probability of collecting some observation ok+1 after
executing action ak at a belief state bk. In addition to opti-
mizing performance, the next session shows how one can en-
force safety in FH-POMDPs by means of chance constraints.

2.1 Computing risk
A chance constraint consists of a bound ∆ on the probability
(chance) of some event happening during policy execution.
Following (Ono, Kuwata, and Balaram 2012), we define this
event as a sequence of states s0:h = s0, s1, . . . , sh of a FH-
POMDP H violating one or more constraints in a set C.
Let p (for “path”) denote a sequence of states p = s0:h,
and let cv(p, C) ∈ {0, 1} be an indicator function such that
cv(p, C) = 1 iff one or more states in p violate constraints
in C. The latter implies that states encompass all the infor-
mation required to evaluate constraints. With this notation,
we can write the chance constraint as

Ep (cv(p, C)|H,π) ≤ ∆, (5)

One should notice that we make no assumptions about con-
straint violations producing observable outcomes, such as
causing execution to halt.

Our approach for incorporating chance constraints into
FH-POMDP’s extends that of (Ono and Williams 2008;
Ono, Kuwata, and Balaram 2012) to partially observable
planning domains. We would like to be able to compute in-
creasingly better approximations of (5) with admissibility
guarantees, so as to be able to quickly detect policies that are
guaranteed to violate (5). For that purpose, let bk be a belief
state over sk, and Sak (for “safe at time k”) be a Bernoulli
random variable denoting whether the system has not vio-
lated any constraints at time k. We define

er(bk, C|π) = 1− Pr

(
h∧
i=k

Sai

∣∣∣∣∣ bk, π
)

(6)

as the execution risk of policy π, as measured from bk. The
probability term Pr

(∧h
i=k Sai

∣∣∣ bk, π) can be written as

Pr

(
h∧

i=k+1

Sai

∣∣∣∣∣Sak, bk, π
)

Pr(Sak|bk, π), (7)

where Pr(Sak|bk, π) is the probability of the system not be-
ing in a constraint-violating path at the k-th time step. Since
bk is given, Pr(Sak|bk, π) can be computed as

Pr(Sak|bk, π)=1−
∑
sk∈S

b(sk)cv(p(sk), C)=1−rb(bk, C), (8)

where p(sk) is the path leading to sk, and rb(bk, C) is called
the risk at the k-th step. Note that cv(p(sk), C) = 1 iff sk
or any of its ancestor states violate constraints in C. In situ-
ations where the particular set of constraints C is not impor-
tant, we will use the shorthand notation rb(bk) and er(bk|π).
The second probability term in (7) can be written as

Pr

(
h∧

i=k+1

Sai

∣∣∣∣∣Sak, bk, π
)

=
∑
bk+1

Pr

(
h∧

i=k+1

Sai

∣∣∣∣∣ bk+1, π

)
Pr(bk+1|Sak, bk, π),

=
∑
bk+1

(1− er(bk+1|π)) Pr(bk+1|Sak, bk, π). (9)



The summation in (9) is over belief states at time k + 1.
These, in turn, are determined by (3), with ak = π(bk)
and some corresponding observation ok+1. Therefore, we
have Pr(bk+1|Sak, bk, π) = Pr(ok+1|Sak, π(bk), bk). For
the purpose of computing the RHS of the last equation, it is
useful to define safe prior belief as
b̄sa(sk+1|ak) = Pr(sk+1|Sak, ak, bk),

=

∑
sk:cv(p(sk),C)=0 T (sk, ak, sk+1)b(sk)

1− rb(bk)
, (10)

With (10), we can define
Prsa(ok+1|ak, bk)= Pr(ok+1|Sak, ak, bk),

=
∑
sk+1

O(sk+1, ok+1)b̄sa(sk+1|ak), (11)

which is the distribution over observations at time k + 1,
assuming that the system was in a non-violating path at time
k. Combining (6), (8), (9), and (11), we get the recursion
er(bk|π) = rb(bk)

+ (1− rb(bk))
∑
ok+1

Prsa(ok+1|π(bk), bk)er(bk+1|π), (12)

which is key to RAO∗. If bk is terminal, (12) simplifies to
er(bk|π) = rb(bk). Note that (12) uses (11), rather than (4),
to compute execution risk. We can now use the execution
risk to express the chance constraint (5) in our definition of
a chance-constrained POMDP (CC-POMDP).
Definition 2 (Chance-constrained POMDP). A CC-
POMDP is a tuple 〈H, C,∆〉, where H is a FH-POMDP; C
is a set of constraints defined over S; and ∆ = [∆1, . . . ,∆q]
is a vector of probabilities for q chance constraints

er(b0, C
i|π) ≤ ∆i, Ci ∈ 2C , i = 1, 2, . . . , q. (13)

The chance constraint in (13) bounds the probability of con-
straint violation over the whole policy execution. Alternative
forms of chance constraints entailing safer behavior are dis-
cussed in Section 2.3. Our approach for finding optimal, de-
terministic, chance-constrained solutions for CC-POMDP’s
in this setting is explained in Section 4.

2.2 Propagating risk bounds forward
The approach for computing risk in (12) does so “back-
wards”, i.e., risk propagation happens from terminal states to
the root of the search tree. However, since we propose com-
puting policies for chance-constrained POMDP’s by means
of heuristic forward search, one should seek to propagate
the risk bound in (13) forward so as to be able to quickly
detect that the current best policy is too risky. For that, let
0≤∆̃k≤1 be a bound such that er(bk|π) ≤ ∆̃k. Also, let
o′k+1 be the observation associated with child b′k+1 of bk
and with probability Prsa(o′k+1|π(bk), bk) 6= 0. From (12)
and the condition er(bk|π) ≤ ∆̃k, we get

er(b′k+1|π) ≤ 1

Prsa(o′k+1|π(bk), bk)

(
∆̃k−rb(bk)

1−rb(bk)

−
∑

ok+1 6=o′k+1

Prsa(ok+1|π(bk), bk)er(bk+1|π)

 . (14)

The existence of (14) requires rb(bk) < 1 and
Prsa(o′k+1|π(bk), bk) 6= 0 whenever Pr(o′k+1|π(bk), bk) 6=
0. Lemma 1 shows that these conditions are equivalent.

Lemma 1. One observes Prsa(ok+1|π(bk), bk) = 0 and
Pr(ok+1|π(bk), bk) 6= 0 if, and only if, rb(bk) = 1.
Proof :
⇐ : if rb(bk) = 1, we conclude from (8) that cv(sk, C) =

1, ∀sk. Hence, all elements in (10) and, consequently, (11)
will have probability 0.

⇒ : from Bayes’ rule, we have

Pr(Sak|ok+1, ak, bk)=
Prsa(ok+1|ak, bk)(1− rb(bk))

Pr(ok+1|ak, bk)
= 0

Hence, we conclude that Pr(¬Sak|ok+1, ak, bk) = 1, i.e.,
the system is guaranteed to be in a constraint-violating path
at time k, yielding rb(bk) = 1.

The execution risk of nodes whose parents have rb(bk) =
1 is irrelevant, as shown by (12). Therefore, it only makes
sense to propagate risk bounds in cases where rb(bk) < 1.

One difficulty associated with (14) is that it depends on
the execution risk of all siblings of b′k+1, which cannot be
computed exactly until terminal nodes are reached. There-
fore, one must approximate (14) in order to render it com-
putable during forward search.

We can easily define a necessary condition for feasi-
bility of a chance constraint at a search node by means
of an admissible execution risk heuristic her (bk+1|π) ≤
er(bk+1|π). Combining her (·) and (14) provides us with a
necessary condition

er(b′k+1|π) ≤ 1

Prsa(o′k+1|π(bk), bk)

(
∆̃k−rb(bk)

1−rb(bk)

−
∑

ok+1 6=o′k+1

Prsa(ok+1|π(bk), bk)her (bk+1|π)

 . (15)

Since her (bk+1|π) computes a lower bound on the ex-
ecution risk, we conclude that (15) gives an upper bound
for the true execution risk bound in (14). The simplest pos-
sible heuristic is her (bk+1|π) = 0, ∀bk+1, which assumes
that it is absolutely safe to continue executing policy π be-
yond bk. Moreover, from the non-negativity of the terms in
(12), we see that another possible choice of a lower bound
is her (bk+1|π) = rb(bk+1), which is guaranteed to be an
improvement over the previous heuristic, for it incorporates
additional information about the risk of failure at that belief
state. However, it is still a myopic risk estimate, given that it
ignores the execution risk for nodes beyond bk+1. All these
bounds can be compute forward, starting with ∆̃0 = ∆.

2.3 Enforcing safe behavior at all times
Enforcing (13) bounds the probability of constraint violation
over total policy executions, but (14) shows that unlikely
policy branches can be allowed risks close or equal to 1 if
that will help improve the objective, giving rise to a “dare-
devil” attitude. Since this might not be the desired risk-aware
behavior, a straightforward way of achieving higher levels of



safety is to depart from the chance constraints in (13) and,
instead, impose a set of chance constraints of the form

er(bk, C
i|π) ≤ ∆i, ∀i, bk s.t. bk is nonterminal. (16)

Intuitively, (16) tells the autonomous agent to “remain
safe at all times”, whereas the message conveyed by (13)
is “stay safe overall”. It should be clear that (16)⇒(13), so
(16) necessarily generates safer policies than (13), but also
more conservative in terms of utility. Another possibility is
to follow (Ono, Kuwata, and Balaram 2012) and impose

h∑
k=0

rb(bk, C
i) ≤ ∆i, ∀i, (17)

which is a sufficient condition for (13) based on Boole’s
inequality. One can show that (17)⇒(16), so enforcing (17)
will lead to policies that are at least as conservative as (16).

3 Relation to constrained POMDP’s
Alternative approaches for chance-constrained POMDP
planning have been presented in (Undurti and How 2010)
and (Poupart et al. 2015), where the authors investigate con-
strained POMDP’s (C-POMDP’s). They argue that chance
constraints can be modeled within the C-POMDP frame-
work by assigning unit costs to states violating constraints,
0 to others, and performing calculations as usual.

There are two main shortcomings associated with the use
of unit costs to deal with chance constraints. First, it only
yields correct measures of execution risk in the particular
case where constraint violations cause policy execution to
terminate. If that is not the case, incorrect probability values
can be attained, as shown in the simple example in Figure 1.
Second, assuming that constraint violations cause execution
to cease has a strong impact on belief state computations.
The key insight here is that assuming that constraint viola-
tions cause execution to halt provides the system with an
invaluable observation: at each non-terminal belief state, the
risk rb(bk, C) in (8) must be 0. The reason for that is simple:
(constraint violation ⇒ terminal belief ) ⇔ (non-terminal
belief ⇒ no constraint violation).

(a) Incorrect execution risks
computed using unit costs.

(b) Correct execution risks
computed according to (12).

Figure 1: Modeling chance constraints via unit costs
may yield incorrect results when constraint-violating states
(dashed outline) are not terminal. Numbers within states are
constraint violation probabilities. Numbers over arrows are
probabilities for a non-deterministic action.

Assuming that constraint violations are terminal is reason-
able when undesirable states are destructive, e.g., the agent
is destroyed after crashing against an obstacle. Nevertheless,
it is rather limiting in terms of expressiveness, since there

are domains where undesirable states can be “benign”. For
instance, in the power supply restoration domain described
in the experimental section, connecting faults to generators
is undesirable and we want to limit the probability of this
event. However, it does not destroy the network. In fact, it
might be the only way to significantly reduce the uncertainty
about the location of a load fault, therefore allowing for a
larger amount of power to be restored to the system.

4 Solving CC-POMDP’s through RAO∗

In this section, we introduce the Risk-bounded AO∗ algo-
rithm (RAO∗) for constructing risk-bounded policies for
CC-POMDP’s. RAO∗ is based on heuristic forward search
in the space of belief states. The motivation for this is sim-
ple: given an initial belief state and limited resources (in-
cluding time), the number of reachable belief states from a
set of initial conditions is usually a very small fraction of the
total number of possible belief states.

Similar to AO∗ in fully observable domains, RAO∗ (Al-
gorithm 1) explores its search space from an initial belief b0
by incrementally constructing a hypergraphG, called the ex-
plicit hypergraph. Each node in G represents a belief state,
and a hyperedge is a compact representation of the process
of taking an action and receiving any of a number of possible
observations. Each node in G is associated with a Q value

Q(bk, ak)=
∑
sk

R(sk, ak)b(sk)+
∑
ok+1

Pr(ok+1|ak, bk)Q∗(bk+1)

(18)

representing the expected, cumulative reward of taking ac-
tion ak at some belief state bk. The first term corresponds to
the expected current reward, while the second term is the ex-
pected reward obtained by following the optimal determin-
istic policy π∗, i.e., Q∗(bk+1) = Q(bk+1, π

∗(bk+1)). Given
an admissible estimate hQ(bk+1) ofQ∗(bk+1), we select ac-
tions for the current estimate π̂ of π∗ according to

π̂(bk) = arg max
ak

Q̂(bk, ak), (19)

where Q̂(bk, ak) is the same as (18) withQ∗(bk+1) replaced
by hQ(bk+1). The portion of G corresponding to the current
estimate π̂ of π∗ is called the greedy graph, for it uses an
admissible heuristic estimate hQ(bk, ak) of Q∗(bk+1) to ex-
plore the most promising areas of G first.

The most important differences between AO∗ and RAO∗
lie in Algorithms 2 and 3. First, since RAO∗ deals with par-
tially observable domains, node expansion in Algorithm 2
involves full Bayesian prediction and update steps, as op-
posed to a simple branching using the state transition func-
tion T . In addition, RAO∗ leverages the heuristic estimates
of execution risk explained in Section 2.2 in order to perform
early pruning of actions that introduce child belief nodes that
are guaranteed to violate the chance constraint. The same
process is also observed during policy update in Algorithm
3, in which heuristic estimates of the execution risk are used
to prevent RAO∗ to keep choosing actions that are promis-
ing in terms of heuristic value, but can be proven to violate
the chance constraint at an early stage.



Algorithm 1 RAO∗

Input: CC-POMDP H , initial belief b0.
Output: Optimal policy π mapping beliefs to actions.
1: Explicit graph G and policy π initially consist of b0.
2: while π has some nonterminal leaf node do
3: n,G← expand-policy(G, π)
4: π← update-policy(n,G, π)
5: return π.

Algorithm 2 expand-policy
Input: Explicit graph G, policy π.
Output: Expanded explicit G′, expanded leaf node n.
1: G′← G, n← choose-promising-leaf(G, π)
2: for each action a available at n do
3: ch ← use (2), (3), (4) to expand children of (n, a).
4: ∀c ∈ ch , use (8), (11), (12), and (18) with admissible

heuristics to estimate Q∗ and er.
5: ∀c ∈ ch , use (15) to compute execution risk bounds
6: if no c ∈ ch violates its risk bound then
7: G′← add hyperedge [(n, a)→ ch]

8: if no action added to n then mark n as terminal.
9: return G′, n.

The proofs of soundness, completeness, and optimality
for RAO∗ are given in Lemma 2 and Theorem 1.
Lemma 2. Risk-based pruning of actions in Algorithms 2
(line 6) and 3 (line 7) is sound.
Proof : The RHS of (14) is the true execution risk bound for
er(b′k+1|π). The execution risk bound on the RHS of (15)
is an upper bound for the bound in (14), since we replace
er(bk+1|π) for the siblings of b′k+1 by admissible estimates
(lower bounds) her (bk+1|π). In the aforementioned prun-
ing steps, we compare her (b′k+1|π), a lower bound on the
true value er(b′k+1|π), to the upper bound (15). Verifying
her (b′k+1|π) > (15) is sufficient to establish er(b′k+1|π) >
(14), i.e., action a currently under consideration is guaran-
teed to violate the chance constraint. �
Theorem 1. RAO∗ is complete and produces the optimal de-
terministic, finite-horizon policies meeting the chance con-
straints.
Proof : a CC-POMDP, as described in Definition 2, has a
finite number of policy branches, and Lemma 2 shows that
RAO∗ only prunes policy branches that are guaranteed not
to be part of any chance-constrained solution. Therefore, if
no chance-constrained policy exists, RAO∗ will eventually
return an empty policy.

Concerning the optimality of RAO∗ with respect to
the utility function, it follows from the admissibility of
hQ(bk, ak) in (19) and the optimality guarantee of AO∗. �

5 Experiments
This section provides empirical evidence of the usefulness
and general applicability of CC-POMDP’s as modeling tool
for risk-sensitive applications, and shows how RAO∗ per-
forms when computing risk-bounded policies in two chal-
lenging domains of practical interest: automated planning

Algorithm 3 update-policy
Input: Expanded n, explicit graph G, policy π.
Output: Updated policy π′.
1: Z ← set containing n and its ancestors reachable by π.
2: while Z 6= ∅ do
3: n← remove(Z) node n with no descendant in Z.
4: while there are actions to be chosen at n do
5: a ← next best action at n according to (19) satisfying

execution risk bound.
6: Propagate execution risk bound of n to the children of

the hyperedge (n, a)
7: if no children violates its exec. risk bound then
8: π(n)← a; break
9: if no action was selected at n then mark n as terminal

for science agents (SA) (Benazera et al. 2005); and power
supply restoration (PSR) (Thiébaux and Cordier 2001). All
models and RAO∗ were implemented in Python and ran on
an Intel Core i7-2630QM CPU with 8GB of RAM.

Our SA domain is based on the planetary rover scenario
described in (Benazera et al. 2005). Starting from some ini-
tial position in a map with obstacles, the science agent may
visit four different sites on the map, each of which could
contain new discoveries with probability based on a prior
belief. If the agent visits a location that contains new dis-
coveries, it will find it with high probability. The agent’s
position is uncertain, so there is always a non-zero risk of
collision when the agent is traveling between locations. The
agent is required to finish its mission at a relay station, where
it can communicate with an orbiting satellite and transmit
its findings. Since the satellite moves, there is a limited time
window for the agent to gather as much information as pos-
sible and arrive at the relay station. Moreover, we assume the
duration of each traversal to be uncontrollable, but bounded.
In this domain, we use a single chance constraint to ensure
that the event “arrives at the relay location on time” happens
with probability at least 1 − ∆. The SA domain has size
|S| = 6144; |A| = 34, |O| = 10.

In the PSR domain (Thiébaux and Cordier 2001), the ob-
jective is to reconfigure a faulty power network by switch-
ing lines on or off so as to resupply as many customers
as possible. One of the safety constraints is to keep faults
isolated at all times, to avoid endangering people and en-
larging the set of areas left without power. However, fault
locations are hidden, and more information cannot be ob-
tained without taking the risk of resupplying a fault. There-
fore, the chance constraint is used to limit the probability
of connecting power generators to faulty buses. Our exper-
iments focused on the semi-rural network from (Thiébaux
and Cordier 2001), which was significantly beyond the reach
of (Bonet and Thiébaux 2003) even for single faults. In our
experiments, there were always circuit breakers at each gen-
erator, plus different numbers of additional circuit breakers
depending on the experiment. Observations correspond to
circuit breakers being open or closed, and actions to opening
and closing switches. The PSR domain is strongly combina-
torial, with |S| = 261; |A| = 68, |O| = 32.

We evaluated the performance of RAO∗ in both domains



under various conditions, and the results are summarized
in Tables 1 (higher utility is better) and 2 (lower cost is
better). The runtime for RAO* is always displayed in the
Time column; Nodes is the number of hypergraph nodes ex-
panded during search, each one of them containing a be-
lief state with one or more particles; and States is the num-
ber of evaluated belief state particles. It is worthwhile to
mention that constraint violations in PSR do not cause ex-
ecution to terminate, and the same is true for scheduling
violations in SA. The only type of terminal constraint vi-
olation are collisions in SA, and RAO∗ makes proper use
of this extra bit of information to update its beliefs. There-
fore, PSR and SA are examples of risk-sensitive domains
which can be appropriately modeled as CC-POMDP’s, but
not as C-POMDP’s with unit costs. The heuristics used were
straightforward: for the execution risk, we used the admis-
sible heuristic her(bk|π) = rb(bk) in both domains. For Q
values, the heuristic for each state in PSR consisted in the
final penalty incurred if only its faulty nodes were not re-
supplied, while in SA it was the sum of the utilities of all
non-visited discoveries.

As expected, both tables show that increasing the maxi-
mum amount of risk ∆ allowed during execution can only
improve the policy’s objective. The improvement is not
monotonic, though. The impact of the chance constraint on
the objective is discontinuous on ∆ when only determinis-
tic policies are considered, since one cannot randomly select
between two actions in order to achieve a continuous inter-
polation between risk levels. Being able to compute increas-
ingly better approximations of a policy’s execution risk,
combined with forward propagation of risk bounds, also al-
low RAO∗ to converge faster by quickly pruning candidate
policies that are guaranteed to violate the chance constraint.
This can be clearly observed in Table 2 when we move from
∆ = 0.5 to ∆ = 1.0 (no chance constraint).

Another important aspect is the impact of sensor infor-
mation on the performance of RAO∗. Adding more sources
of sensing information increases the branching on the search
hypergraph used by RAO∗, so one could expect performance
to degrade. However, that is not necessarily the case, as
shown by the left and right numbers in the cells of Table
2. By adding more sensors to the power network, RAO∗
can more quickly reduce the size of its belief states, there-
fore leading to a reduced number of states evaluated during
search. Another benefit of reduced belief states is that RAO∗
can more effectively reroute energy in the network within
the given risk bound, leading to lower execution costs.

Finally, we wanted to investigate how well a C-POMDP
approach would perform in these domains relative to a CC-
POMDP. Following the literature, we made the additional
assumption that execution halts at all constraint violations,
and assigned unit terminal costs to those search nodes. Re-
sults on two example instances of PSR and SA domains were
the following: I) in SA, C-POMDP and CC-POMDP both at-
tained an utility of 29.454; II) in PSR, C-POMDP reached a
final cost of 53.330, while CC-POMDP attained 36.509. The
chance constraints were always identical for C-POMDP and
CC-POMDP. First, one should notice that both models had
the same performance in the SA domain, which is in agree-

ment with the claim that they coincide in the particular case
were all constraint violations are terminal. The same, how-
ever, clearly does not hold in the PSR domain, where the C-
POMDP model had significantly worse performance than its
corresponding CC-POMDP with the exact same parameters.
Assuming that constraint violations are terminal in order to
model them as costs greatly restricts the space of potential
solution policies in domains with non-destructive constraint
violations, leading to conservatism. A CC-POMDP formu-
lation, on the other hand, can potentially attain significantly
better performance while offering the same safety guarantee.

Window[s] ∆ Time[s] Nodes States Utility
20 0.05 1.30 1 32 0.000
30 0.01 1.32 1 32 0.000
30 0.05 49.35 83 578 29.168
40 0.002 9.92 15 164 21.958
40 0.01 44.86 75 551 29.433
40 0.05 38.79 65 443 29.433

100 0.002 95.23 127 1220 24.970
100 0.01 184.80 161 1247 29.454
100 0.05 174.90 151 1151 29.454

Table 1: SA results for various time windows and risk levels.
The Window column refers to the time window for the SA
agent to gather information, not a runtime limit for RAO∗.

∆ Time[s] Nodes States Cost
0 0.025/0.013 1.57/1.29 5.86/2.71 45.0/30.0
.5 0.059/0.014 3.43/1.29 10.71/2.71 44.18/30.0
1 2.256/0.165 69.3/11.14 260.4/23.43 30.54/22.89
0 0.078/0.043 2.0/1.67 18.0/8.3 84.0/63.0
.5 0.157/0.014 3.0/1.29 27.0/2.71 84.0/30.0
1 32.78/0.28 248.7/5.67 1340/32.33 77.12/57.03
0 1.122/0.093 7.0/2.0 189.0/12.0 126.0/94.50
.5 0.613/0.26 4.5/4.5 121.5/34.5 126.0/94.50
1 123.9/51.36 481.5/480 8590.5/2648 117.6/80.89

Table 2: PSR results for various numbers of faults (#) and
risk levels. Top: avg. of 7 single faults. Middle: avg. of 3
double faults. Bottom: avg. of 2 triple faults. Left (right)
numbers correspond to 12 (16) network sensors.

6 Conclusions
We have presented RAO∗, an algorithm for optimally solv-
ing CC-POMDP’s. By combining the advantages of AO∗
in the belief space with forward propagation of risk upper
bounds, RAO∗ is able to solve challenging risk-sensitive
planning problems of practical interest and size. Our agenda
for future work includes generalizing the algorithm to move
away from the finite horizon setting, as well as more general
chance constraints, including temporal logic path constraints
(Teichteil-Königsbuch 2012).
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