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Abstract

In this paper, we study the problem of multi-robot cooperative target
tracking, where a team of mobile robots cooperatively localize themselves
and track (multiple) targets using their onboard sensor measurements as
well as target stochastic kinematic information, and which is hence termed
cooperative localization and target tracking (CLATT). A novel efficient, con-
sistent, unscented incremental smoothing (UIS) algorithm is introduced. The
key idea of the proposed approach is that we employ unscented transform to
numerically compute Jacobians so as to attain reduced linearization errors,
while further imposing appropriate constraints on unscented transform to en-
sure correct observability properties for the incrementally-linearized system.
In particular, for the first time we analyze the observability properties of the
optimal batch maximum a posteriori (MAP)-based CLATT system, and show
that the Fisher information (Hessian) matrix without prior has a nullspace
of dimension three, corresponding to the global state information. However,
this may not be the case when the Jacobians (and thus the Hessian) are
computed canonically by the standard unscented transform, thus negatively
impacting the estimation performance. To address this issue, we formulate
an observability-constrained unscented transform, and find its closed-from
solution as the projection of the canonical unscented Jacobian (i.e., com-
puted by the standard unscented transform) onto an appropriate observable
subspace such that the resulting Hessian has a nullspace of correct dimen-
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sions. The proposed approach is tested extensively through Monte Carlo
simulations as well as a real-world experiment, and is shown to outperform
the state-of-the-art incremental smoothing algorithm.

Keywords: Multi-robot systems, cooperative localization, target tracking,
nonlinear estimation, maximum a posteriori (MAP), incremental smoothing
and mapping (iSAM), unscented transform, parameter observability

1. Introduction

Mobile robot networks have become increasingly popular due to their abil-
ity to sense, communicate, and interact with the physical world, and offer a
broad spectrum of applications. For example, a team of mobile robots have
been used for inspection of nuclear power plants [1], aerial surveillance [2],
search and rescue [3], and underwater or space exploration [4]. In order
for multi-robot teams to navigate safely and thus successfully perform these
tasks, it is essential for robots to determine their positions and orientations
(poses) precisely. In GPS-denied environments and in absence of robust land-
marks, a team of robots can localize by sharing relative position measure-
ments and jointly estimating their poses, which is the problem of cooperative
localization (CL) [5–7]. Current approaches, either centralized or distributed,
solving this problem typically assume static environments, i.e., with no mov-
ing objects in the workspace or without considering them, and are based
on the extended Kalman filtering (EKF) [7], maximum likelihood estimation
(MLE) [8], maximum a posteriori (MAP) estimation [9], or particle filtering
(PF) [10].

However, in practice a team of mobile robots often work in a dynamic
environment with various moving objects. For example, robots co-work with
humans in office buildings or museums [11]. In such cases, it is necessary
for the robots to simultaneously determine their poses and the kinematic
states of moving objects (targets), such as positions and velocities. This
is in part due to the fact that jointly estimating the robots and targets
results in better accuracy for the robots’ position estimates, in comparison
to localizing the robots by ignoring the targets (which is the case for most
existing CL approaches) [12]. This is the problem of cooperative localization
and target tracking (CLATT), and arises in many robotic applications such
as surveillance [13, 14]. In this paper, we study in-depth the CLATT problem
and develop a new efficient consistent incremental estimation algorithm.
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Although many different algorithms are available for solving the CLATT
problem, among them the EKF remains a popular choice primarily due to
its relatively low processing requirements [12]. However, its performance
depends on the magnitude of the linearization errors. In order to reduce
the linearization errors, the unscented transform (statistical linearization)
employed by the unscented Kalman filter (UKF) [15] is often used, which
deterministically samples the nonlinear model around the current state esti-
mate and employs linear regression to improve the accuracy of the linear ap-
proximation [16]. Nevertheless, any (explicit or implicit) linearization-based
filtering approach marginalizes all but the current state and hence is unable
to correct linearization errors involving previous states. This can result in
large linearization errors, thus degrading the filter’s performance.

For this reason, smoothing approaches, either in batch or incremental
fashion, have recently become prevalent in robotics (see [17–22] and refer-
ences therein). In particular, a batch-MAP estimator [23] or bundle adjust-
ment [24] computes the estimates for the states at all time steps using all
available measurements. This allows continuous relinearization around all
the states, which can greatly reduce the linearization errors. However, since
the size of the state vector in the batch-MAP estimator increases continu-
ously over time, the processing and memory requirements can easily become
too high to perform in real time. To reduce the computational complexity
of the batch estimation, an incremental smoothing and mapping (iSAM) al-
gorithm [19] has been developed particularly for simultaneous localization
and mapping (SLAM) problems. The key idea of the iSAM is employing a
factorization-updating method to allow reusing the information-matrix fac-
torization available from previous time steps, while computationally demand-
ing procedures, such as relinearization and batch factorization, are only per-
formed intermittently. Although the iSAM was shown to perform well in
many static robotic mapping applications [19], it still may suffer from large
linearization errors, and yet has not been investigated in dynamic environ-
ments to incorporate target tracking in a CL estimation framework.

To address the aforementioned issues (i.e., reducing linearization errors
and integrating target tracking), in this paper we introduce an unscented
incremental smoothing (UIS) algorithm for the CLATT problem. In par-
ticular, the proposed UIS computes the Jacobians, and thus the Hessian,
by unscented transform, which has been shown to reduce linearization er-
rors [15]. However, observability analysis of the CLATT system reveals that
the Fisher information (Hessian) matrix computed numerically via the stan-
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dard unscented transform may have a nullspace that has different dimensions
from that of the optimal (up to linearization errors) batch-MAP estimator.
This implies that spurious (nonexistent) information is gained from the mea-
surements, which can lead to estimation inconsistency1 or even divergence
(see [18]). To overcome this issue, the proposed UIS explicitly enforces cor-
rect observability constraints on the unscented transform (linear regression),
whose optimal solution turns out to projecting the canonical unscented Jaco-
bians computed by the standard unscented transform onto the desired observ-
able subspace. At this point, we should stress that apart from the CLATT
problem considered in this paper, the proposed UIS methodology can be ap-
plicable for a large class of nonlinear estimation problems in robotics, such
as CL, SLAM, and cooperative SLAM (C-SLAM). Note also that, in com-
parison to our previous conference publication [26], in this paper we study in
depth the observability properties of the batch-MAP based CLATT system,
present in detail the derivations of the proposed UIS, and thoroughly validate
its superior performance over the state-of-the-art iSAM algorithm, both in
Monte-Carlo simulations and in a real-world experiment.

The remainder of the paper is organized as follows: After formulating
the CLATT problem in the next section, we describe both the batch and
incremental smoothing algorithms used to solve the problem in Section 3.
In Section 4 we perform the parameter observability analysis for the opti-
mal batch-MAP based CLATT system and analytically show the nullspace
(unobservable subspace) of the Fisher information (Hessian) matrix, which
is different from that of the standard incremental smoothing based system.
Based on this analysis, in Section 5 we present in detail the proposed UIS
algorithm which employs the unscented transform to numerically compute
Jacobians and moreover introduces a key projection operation when com-
puting the measurement Jacobians. The performance of the proposed UIS is
validated through both Monte Carlo simulations in Section 6 and a real-world
experiment in Section 7. Finally, Section 8 outlines the main conclusions of
this work, as well as possible future research directions.

1As defined in [25], a state estimator is consistent if the estimation errors are zero-mean
(i.e., unbiased), and have covariance equal to the true covariance.
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2. The CLATT Problem

A typical CLATT scenario can be described as follows: A team of mobile
robots that are equipped with proprioceptive (e.g., an odometer or an inertial
measurement unit) and exteroceptive (e.g., a laser scanner or a camera) sen-
sors, move in a plane and track (multiple) targets. In contrast to the robots,
the targets generally do not have any onboard sensor, while their motion
is assumed to follow a known stochastic kinematic model such as constant-
velocity motion model. A tracking robot measures distance and/or bearing
to the targets as well as the other ones in the team. Using all the available
proprioceptive and exteroceptive measurements, we aim to estimate the state
trajectory of both robots and targets at each time step. Note that in this
work we do not assume communication among robots, which, however, is not
a necessary assumption and can be integrated into the proposed estimation
framework (see Section 5). For example, each robot can communicate its
estimates or measurements to the others so that more information can be
utilized by the estimator.

The state vector of the CLATT at time-step k contains all the robots’
poses (positions and orientations) and the targets’ kinematic states such as
position, velocity, acceleration, etc.:

x(k) =



xR1(k)
...

xRM
(k)

xT1(k)
...

xTN (k)


(1)

where
xRi

:=
[
pTRi

φRi

]T
=
[
xRi

yRi
φRi

]T
, i = 1, . . . ,M

denotes the ith robot’s pose (position and orientation), and

xTi :=
[
pTTi dTTi

]T
=
[
xTi yTi ẋTi ẏTi ẍTi ÿTi · · ·

]T
, i = 1, . . . , N

denotes the ith target’s kinematic states, including the target’s position, pTi ,
and the higher-order time derivatives of the target’s position, dTi . Stacking
all the states in the time interval [0, k] yields the state trajectory which we
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want to estimate at every time step:

x(0 : k) =


x(0)
x(1)

...
x(k)

 (2)

In what follows, we describe the motion and measurement models that
will be used in the smoothing algorithms in the next section.

2.1. Robot motion model

Each tracking robot is equipped with an odometer, whose measurement
serves as the control input to propagate the robot pose based on the following
motion model:

pRi
(k + 1) = pRi

(k) + C(φRi
(k)) RkpRi,k+1

(3)

φRi
(k + 1) = φRi

(k) + RkφRi,k+1
(4)

where C(·) denotes the 2 × 2 rotation matrix, and ui(k) := RkxRi,k+1
:=[

RkpRi,k+1
RkφRi,k+1

]
is the true odometry (control input), i.e., the robot’s motion

between time-steps k and k + 1, expressed with respect to the robot’s frame
at time-step k, {Rk}. The corresponding odometry measurement, umi

(k),
is commonly assumed to be corrupted by zero-mean white Gaussian noise,
wi(k) = ui(k)− umi

(k), with covariance QRi
(k). Clearly this motion model

is nonlinear and can be written in the following generic form:

xRi
(k + 1) = f (xRi

(k),umi
(k) + wi(k)) (5)

Linearization of the above functions (3) and (4) at the current state esti-
mates, x̂(0 : k + 1|k + 1), yields the following Jacobians with respect to the
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entire state trajectory (2) and noise, respectively:2

FRi
(k) =

[
0 · · · −ΦRi

(k) I3 · · · 0
]

(6)

GRi
(k) =

[
C(φ̂Ri

(k|k)) 02×1
01×2 1

]
(7)

where

ΦRi
(k) =

[
I2 Γ (p̂Ri

(k + 1|k + 1)− p̂Ri
(k|k))

01×2 1

]
(8)

Γ =

[
0 −1
1 0

]
(9)

Note that the above model (3) and (4) is general and encompasses all the
motion models used in practice, such as the unicycle and Ackerman models.
For instance, if the unicycle model is used, and both the linear velocity,
vi(k), and the rotational velocity, ωi(k), are constant during each propagation

interval, we have RkxRi,k+1
=

vi(k)δt
0

ωi(k)δt

, where δt is the sampling period.

Substitution in (3)-(4) yields the following propagation equations that are
commonly seen in the literature:

pRi
(k + 1) = pRi

(k) +

[
vi(k)δt cos(φRi

(k))
vi(k)δt sin(φRi

(k))

]
(10)

φRi
(k + 1) = φRi

(k) + ωi(k)δt (11)

2.2. Target kinematic model

We consider the case where each target moves randomly but assumes
a known stochastic kinematic model that describes its motion (e.g., con-
stant acceleration, or constant velocity). In particular, the discrete-time

2Throughout the paper, (`|j) refers to the estimate of a quantity at time-step `, after
all measurements up to time-step j have been processed. x̂ is used to denote the estimate
of random variable x, and x̃ = x− x̂ is the error in this estimate. x̄ and P̄xx denote the
sample mean and covariance of sample points Xi, drawn from the pdf p(x). P̄xy denotes
the sample cross-correlation between the sets of samples Xi and Yi, drawn from the pdfs
of x and y, respectively. Finally, 0m×n is the m× n matrix of zeros, and In is the n× n
identity matrix.
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state propagation is given by the following linear equation:

xTi(k + 1) = ΦTi(k)xTi(k) + GTi(k)wTi(k) (12)

where wTi is zero-mean white Gaussian noise with covariance QTi . The state
transition matrix, ΦTi , and the process noise Jacobian, GTi , that appear in
the preceding expression depend on the particular stochastic motion model
used [25]. We will make no further assumptions on these matrices other than
that their values are known. Similarly, the “Jacobian” matrix of (12) with
respect to the state trajectory is given by:

FTi(k) =
[
0 · · · −ΦTi(k) Idim(xTi

) · · · 0
]

(13)

2.3. Measurement model

In this work the tracking robots measure distance and/or bearing to the
targets and the other robots in the team. In what follows we present both
distance and bearing measurement equations, while a particular application
may have any combination of these two types of measurements. For exam-
ple, we consider the range-only measurements in the simulation tests (see
Section 6), while the bearing-only observations are used in the experiment
(see Section 7).

2.3.1. Robot-to-robot measurements

At time-step k robot i measures distance and bearing to robot j, which
is given by:

zRiRj
(k) =

[ √
(xRj

(k)− xRi
(k))2 + (yRj

(k)− yRi
(k))2

atan2
(
(yRj

(k)− yRi
(k)), (xRj

(k)− xRi
(k))

)
− φRi

(k)

]
+ nRij

(k)

=: h
(
xRi

(k),xRj
(k)
)

+ nRij
(k) (14)

where nRij
is zero-mean white Gaussian measurement noise with covariance

RRij
. For the use of linearized smoothing algorithms presented in the next

section, we linearize (14) with respect to the state trajectory (2), at the
current state estimate, x̂(0 : k|k), and obtain the following measurement
Jacobian matrix:

HRij
(k) =

[
0 · · · HRi

(k) · · · HRj
(k) · · · 0

]
(15)
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where

HRi
(k) =


p̂T
Ri

(k|k)−p̂T
Rj

(k|k)

||p̂T
Rj

(k|k)−p̂T
Ri

(k|k)|| 0

(p̂T
Ri

(k|k)−p̂T
Rj

(k|k))ΓT

||p̂T
Rj

(k|k)−p̂T
Ri

(k|k)||2 −1

 (16)

HRj
(k) =


p̂T
Rj

(k|k)−p̂T
Ri

(k|k)

||p̂T
Rj

(k|k)−p̂T
Ri

(k|k)|| 0

(p̂T
Rj

(k|k)−p̂T
Ri

(k|k))ΓT

||p̂T
Rj

(k|k)−p̂T
Ri

(k|k)||2 0

 (17)

2.3.2. Robot-to-target measurements

Similarly, the robot-to-target distance and bearing measurement at time-
step k is given by:

zRiTj(k) =

[ √
(xTj(k)− xRi

(k))2 + (yTj(k)− yRi
(k))2

atan2
(
(yTj(k)− yRi

(k)), (xTj(k)− xRi
(k))

)
− φRi

(k)

]
+ nTij(k)

=: h
(
xRi

(k),xTj(k)
)

+ nTij(k) (18)

where nTij is zero-mean white Gaussian measurement noise with covariance
RTij . Analogously, the measurement Jacobian of (18), HTij , can be obtained
by replacing p̂Rj

in (15) by p̂Tj , and has the following sparse structure:

HTij(k) =
[
0 · · · HRi

(k) · · · HTj(k) · · · 0
]

(19)

3. Smoothing Algorithms

In this section, we present the batch and incremental smoothing algo-
rithms available for the CLATT problem. In particular, the optimal (up
to linearization errors) batch-MAP estimator [23] along with its QR-based
solver is first described, serving as the benchmark for the incremental smooth-
ing algorithms, and subsequently the key idea of the iSAM algorithm [19] is
explained in the CLATT context.

3.1. Batch-MAP estimator

Our objective is to estimate the entire state trajectory using all the avail-
able information, which includes: (i) the prior information about the initial
state, described by a Gaussian pdf with mean x̂(0|0) and covariance P(0|0),
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(ii) the motion information [see (3), (4), and (12)], and (iii) the sensor mea-
surements [see (14) and (18)]. To this end, the batch-MAP estimator is em-
ployed to determine the entire trajectory estimate x̂(0 : k|k) that maximizes
the following posterior pdf:

p (x(0 : k)|z(0 : k)) ∝ p (x(0)) × (20)

k−1∏
κ=0

[
M∏
i=1

p(xRi
(κ+ 1)|xRi

(κ))
N∏
j=1

p(xTj(κ+ 1)|xTj(κ))

]
×

k∏
κ=0

 ∏
{i,j}∈SR

p(zRiRj
(κ)|xRi

(κ),xRj
(κ))

∏
{m,n}∈ST

p(zRmTn(κ)|xRm(κ),xTn(κ))


where z(0 : k) denotes all the sensor measurements available in the time
interval [0, k], SR := {i, j|i = 1, . . . ,M ; j = 1, . . . ,M ; i 6= j}, and ST :=
{m,n|m = 1, . . . ,M ;n = 1, . . . , N}. In the above expression (20), we have
used the assumptions that state and measurement noise is independent and
both robot and target motion is a Markov process [see (5) and (12)]. By
assuming Gaussian noise, maximization of (20) is equivalent to minimizing
the following cost function:

c (x(0 : k)) :=
1

2
||x0 − x̂0|0||2P0|0

+ (21)

1

2

k−1∑
κ=0

M∑
i=1

||xRi
(κ+ 1)− f(xRi

(κ),umi
(κ))||2Q̄Ri

(κ) +

1

2

k−1∑
κ=0

N∑
j=1

||xTj(κ+ 1)−ΦTjxTj(κ)||2Q̄Tj
(κ) +

1

2

k∑
κ=0

∑
{i,j}∈SR

||zRiRj
(κ)− h(xRi

(κ),xRj
(κ))||2RRij

(κ) +

1

2

k∑
κ=0

∑
{m,n}∈ST

||zRmTn(κ)− h(xRm(κ),xTn(κ))||2RTmn (κ)

where Q̄Ri
:= GRi

QRi
GT
Ri

[see (5), (8), and (7)], and Q̄Tj := GTjQTjG
T
Tj

[see (12)]. In the above expressions, we have also employed the notation,
||r||2Σ := rTΣ−1r, i.e., the squared Mahalanobis distance of residual r with
covariance Σ.
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This is a nonlinear least-squares problem [see (5), (14), and (18)]. A
standard iterative Newton-Raphson approach [27] is often used for its opti-
mization, although it is only able to converge to one local minimum within the
basin of attraction of the initial estimate. Specifically, at the `-th iteration,
a correction, δx(`)(0 : k), to the current estimate, x̂(`)(0 : k|k), is computed
by minimizing the second-order Taylor-series approximation of (21):3

c (x̂(0 : k|k) + δx(0 : k)) ' (22)

c(x̂(0 : k|k)) + bbδx(0 : k) +
1

2
δxT (0 : k)Abδx(0 : k)

In the above equation, the Jacobian matrix of c(·) with respect to x(0 : k),

b
(`)
b , is computed and factorized as follows:

bb = P−10|0 (x̂(0|k)−x̂(0|0)) +

k−1∑
κ=0

M∑
i=1

FTRi
(κ)Q̄−1Ri

(κ) (x̂Ri
(κ+ 1|k)−f(x̂Ri

(κ|k),umi
(κ))) +

k−1∑
κ=0

N∑
i=1

FTTi(κ)Q̄−1Ti (κ) (x̂Ti(κ+ 1|k)−ΦTi(κ)x̂Ti(κ|k)) +

k∑
κ=0

∑
{i,j}∈SR

H(`)T

Rij
(κ)R−1Rij

(
zRiRj

(κ)−h(x̂Ri
(κ|k), x̂Rj

(κ|k))
)

+

k∑
κ=0

∑
{m,n}∈ST

H(`)T

Tmn
(κ)R−1Tmn

(zRmTn(κ)−h(x̂Rm(κ|k), x̂Tn(κ|k)))

=: JT r (23)

3Note that hereafter we occasionally drop the time and iteration indices in order to
make the presentation concise, while these can be easily inferred from the context.
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where

J :=



P
− 1

2

0|0

Q̄
− 1

2
R1

(0)FR1(0)
...

Q̄
− 1

2
R1

(k − 1)FR1(k − 1)
...

Q̄
− 1

2
RM

(0)FRM
(0)

...

Q̄
− 1

2
RM

(k − 1)FRM
(k − 1)

...

Q̄
− 1

2
T1

(0)FT1(0)
...

Q̄
− 1

2
T1

(k − 1)FT1(k − 1)
...

Q̄
− 1

2
TN

(0)FTN (0)
...

Q̄
− 1

2
TN

(k − 1)FTN (k − 1)
...

R
− 1

2
Rij

(0)HRij
(0)

...

R
− 1

2
Rij

(k)HRij
(k)

...

R
− 1

2
Tmn

(0)HTmn(0)
...

R
− 1

2
Tmn

(k)HTmn(k)
...



= Λ



I
FR1(0)

...
FR1(k − 1)

...
FRM

(0)
...

FRM
(k − 1)
...

FT1(0)
...

FT1(k − 1)
...

FTN (0)
...

FTN (k − 1)
...

HRij
(0)

...
HRij

(k)
...

HTmn(0)
...

HTmn(k)
...



(24)
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r :=



P
− 1

2

0|0 (x̂(0|k)− x̂(0|0))

Q̄
− 1

2
R1

(0) (x̂R1(1|k)− f(x̂R1(0|k),um1(0)))
...

Q̄
− 1

2
R1

(k − 1) (x̂R1(k|k)− f(x̂R1(k − 1|k),um1(k − 1)))
...

Q̄
− 1

2
RM

(0) (x̂RM
(1|k)− f(x̂RM

(0|k),umM
(0)))

...

Q̄
− 1

2
RM

(k − 1) (x̂RM
(k|k)− f(x̂RM

(k − 1|k),umM
(k − 1)))

...

Q̄
− 1

2
T1

(0) (x̂T1(1|k)−ΦT1(0)x̂T1(0|k))
...

Q̄
− 1

2
T1

(k − 1) (x̂T1(k|k)−ΦT1(k − 1)x̂T1(k − 1|k))
...

Q̄
− 1

2
TN

(0) (x̂TN (1|k)−ΦTN (0)x̂TN (0|k))
...

Q̄
− 1

2
TN

(k − 1) (x̂TN (k|k)−ΦTN (k − 1)x̂TN (k − 1|k))
...

R
− 1

2
Rij

(0)
(
zRiRj

(0)− h(x̂Ri
(0|k), x̂Rj

(0|k))
)

...

R
− 1

2
Rij

(k)
(
zRiRj

(k)− h(x̂Ri
(k|k), x̂Rj

(k|k))
)

...

R
− 1

2
Tmn

(0) (zRmTn(0)− h(x̂Rm(0|k), x̂Tn(0|k)))
...

R
− 1

2
Tmn

(k) (zRmTn(k)− h(x̂Rm(k|k), x̂Tn(k|k)))
...



(25)

for all {i, j} ∈ SR and {m,n} ∈ ST . In the above expression (24),

Λ := Diag
(
P
− 1

2

0|0 , · · · , Q̄
− 1

2
Ri

(κ), · · · , Q̄−
1
2

Ti
(κ), · · · ,R−

1
2

Rij
(κ), · · · ,R−

1
2

Tmn
(κ), · · ·

)
.
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On the other hand, during the Gauss-Newton iterations which are arguably
the most widely used in practice, the Hessian, Ab, is approximated by:

Ab = P−10|0 +
k−1∑
κ=0

M∑
i=1

FTRi
(κ)Q̄−1Ri

(κ)FRi
(κ) +

k−1∑
κ=0

N∑
i=1

FTTi(κ)Q̄−1Ti (κ)FTi(κ)

+
k∑

κ=0

∑
{i,j}∈SR

HT
Rij

(κ)R−1Rij
(κ)HRij

(κ) +
k∑

κ=0

∑
{m,n}∈ST

HT
Tmn

(κ)R−1Tmn
(κ)HTmn(κ)

=: JTJ (26)

This is a good approximation for small-residual problems [24]. Due to the
sparse structure of the matrices, FRi

, FTi , HRij
, andHTmn [see (6), (13), (15),

and (19)], the matrix Ab is also sparse, which can be exploited to speed-up
the solution of the linearized system, Abδx = bb.

Based on (22), (23) and (26), it is not difficult to see that:

min
δx(0:k)

c(x̂(0 : k|k) + δx(0 : k)) ⇔ min
δx(0:k)

||Jδx(0 : k)− r||2 (27)

The QR factorization is often employed to solve the above least-squares prob-
lem (27), i.e.,

min
δx(0:k)

||Jδx(0 : k)− r||2 =
∣∣∣∣∣∣Q [R

0

]
δx(0 : k)− r

∣∣∣∣∣∣2 =∣∣∣∣∣∣ [R
0

]
δx(0 : k)−QT r

∣∣∣∣∣∣2 =:
∣∣∣∣∣∣ [R

0

]
δx(0 : k)−

[
d
e

] ∣∣∣∣∣∣2 (28)

⇔ min
δx(0:k)

||Rδx(0 : k)− d||2 (29)

where we have used the reduced QR of J [28], i.e.,

J = Q

[
R
0

]
=
[
Q1 Q2

] [R
0

]
= Q1R (30)

From (29) δx(0 : k) can be efficiently solved by back substitution. Once
δx(`)(0 :k) is found, the new estimate is updated as:

x̂(`+1)(0 : k|k) = x̂(`)(0 : k|k) + δx(`)(0 : k) (31)

Only given an initial estimate x̂(0)(0 : k|k) that resides within the attraction
basin of the global optimum, this iterative algorithm computes the global
minimum (i.e., true MAP estimate) for the entire state trajectory.
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3.2. iSAM algorithm

Every time when a new measurement such as zRmTn(k+1) becomes avail-
able,4 in principle, we need to recompute the full Jacobian J (24) and residual
r (25), and then solve the batch-MAP problem from scratch. However, this
is an expensive operator, even by exploiting the sparse structure of the Hes-
sian matrix [17, 20, 29], in part because the size of the state trajectory grows
unbounded over time and the batch problem can quickly become too large
for real-time operation.

In order to save computations, incremental smoothing is often used.
For example, the state-of-the-art iSAM algorithm reuses the previously-
computed Jacobian and incrementally updates the QR factorization in solv-
ing the batch-MAP problem [19]. Specifically, we augment J (without re-
computing it) with the new measurement Jacobian HTmn [see (30)]:

Ja :=

[
J

R
− 1

2
Tmn
HTmn

]
=

[
Q1 0
0 I

][
R

R
− 1

2
Tmn
HTmn

]
(32)

We now aim to decompose Ja into a triangular form (i.e., square-root in-
formation matrix). Since J was already factorized into the triangular R,
we only need to zero out the new block row, i.e., the new measurement Ja-
cobian HTmn , in order to obtain the updated square-root information ma-
trix Ra. This can be achieved efficiently, for example, by using Givens
QR [28]. Similarly, the corresponding new residual vector can be obtained
by applying the same Givens rotations to the augmented residual vector,

da :=

[
d

R
− 1

2
Tmn

(zRmTn − h(x̂Rm , x̂Tn))

]
. Similar steps are taken to process any

other newly-available measurement, such as robot odometry umi
(k + 1) and

robot-to-robot observations zRiRj
(k + 1).

It is important to note that, although relinearization is not needed at each
time step when a new measurement becomes available, in order to reduce the
linearization errors, we relinearize the system at the latest, and thus the best,
state estimates periodically [19] or as needed when the linearization point
significantly deviates from the current state estimate [21]. In addition, we
can combine variable reordering [19] with this batch factorization to reduce

4Note that the robot and target motion [see (5) and (12)] can be considered as a
different type of measurements and hence can be treated analogously.
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fill-in of the resulting triangular system [see (28)], which can further speed
up the subsequent incremental estimation.

4. Observability Analysis

In this section, we examine the parameter observability properties [25] of
the batch-MAP based CLATT system, which, for the time being, is consid-
ered as a parameter (instead of state) estimation problem. It should be noted
that even though a rich body of literature on observability analysis for SLAM
or CL (e.g., see [30–36]), to the best of our knowledge, no prior work has ex-
amined the parameter observability for the CLATT system. The study of
parameter observability examines whether the information provided by the
available measurements is sufficient for estimating the parameters without
ambiguity; when parameter observability holds, the Fisher information ma-
trix (FIM) is invertible [25]. Since the FIM encapsulates all the information
available in the measurements, by studying its nullspace (i.e., “unobservable
subspace”) we can gain insights about the directions in the parameter (state)
space along which the estimator should or should not acquire information
from the measurements.

In particular, close inspection of the Hessian matrix (FIM), Ab (26), re-
veals the following observability properties of the batch-MAP based CLATT,
which is the benchmark system for our proposed incremental solution:

Lemma 4.1. Without prior information,5 at time-step k the FIM (Hessian)
of the batch-MAP based CLATT [see (26)] has a nullspace of dimension three,

5Since we are interested in the information contained in the available measurements,
we consider the case without prior (i.e., P0|0 → ∞). In this case, the first block row of
the matrix J (24) corresponding to the prior becomes zeros and can be ignored without
changing the rank of the matrix.
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which is given by:

Nb(k) := null (Ab(k)) = span
col.



I2 Γp̂R1(0|k)
0 1
...

...
I2 Γp̂R1(k|k)
0 1
...

...
...

...
I2 Γp̂RM

(0|k)
0 1
...

...
I2 Γp̂RM

(k|k)
0 1

I2 Γp̂T1(0|k)

0 (Idim(dT1
)/2 ⊗ Γ)d̂T1(0|k)

...
...

I2 Γp̂T1(k|k)

0 (Idim(dT1
)/2 ⊗ Γ)d̂T1(k|k)

...
...

...
...

I2 Γp̂TN (0|k)

0 (Idim(dTN
)/2 ⊗ Γ)d̂TN (0|k)

...
...

I2 Γp̂TN (k|k)

0 (Idim(dTN
)/2 ⊗ Γ)d̂TN (k|k)



(33)

where null denotes the right nullspace and ⊗ is the Kronecker product.

Proof. See Appendix A.

This result implies that any small change of the state along the directions
spanned by the columns of Nb(k) cannot be discerned based on the available
measurements. Thus, the subspace spanned by these directions is termed the
“unobservable” subspace. In particular, the physical interpretation of Nb(k)
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can be found analogously as in [18], i.e., the first two columns describe global
translations of the state, while the third one describes global rotations and
higher-order kinematic states such as velocity and acceleration. We thus see
that without a prior, the global pose (position and orientation) as well as
the higher-order kinematic states cannot be determined. On the other hand,
when the prior is available (i.e., P(0|0) <∞), the Hessian generally becomes
full-rank [see (24) and (26)], and thus it is possible to uniquely determine
estimates for all the state variables. These results agree with our intuition
that based on relative measurements alone, the state trajectory cannot be
determined with respect to the global frame of reference.

When using an incremental smoothing solution to approximate the op-
timal batch one, the smoother is expected to have the similar observability
properties as the batch-MAP estimator. However, this is not the case for the
standard iSAM algorithm. In particular, as seen from (32) when augment-
ing the Jacobian Ja at time-step k + 1, we do not recompute this Jacobian
from scratch and instead reuse the previous computations of J that was
calculated using the past state estimates x̂(`|`), ∀` = 0, · · · , k; while the
current new Jacobians – including propagation Jacobian FRi

and measure-
ment Jacobians HTmm and HRij

– are evaluated at the current state estimate
x̂(`|k + 1). This leads to different estimates for the same state variable used
as linearization points in computing incremental Jacobians, which results in
different observability properties for the standard incremental smoother than
those of the batch-MAP estimator (which is analogous to the case of fixed-lag
smoother [18, 37]).

5. Unscented Incremental Smoothing

In this section, we present in detail the proposed UIS algorithm that em-
ploys the unscented transform to compute the Jacobians and thus the Hes-
sian (FIM) while enforcing correct dimensions for the corresponding FIM’s
nullspace. In the following we begin with a brief overview of unscented
transform in the context of linear regression Kalman filter (LRKF) [16] and
UKF [15], which will serve as the basis for the proposed approach.

5.1. Unscented transform

The LRKF [16] formulates a linear regression problem to approximate a
nonlinear function z = h(x) by a linear model z ' Hx + v, where H and v
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are respectively the regression matrix and vector, and e := z − (Hx + v) is
the linearization error, i.e.,

min
H,v

∫ +∞

−∞
||z− (Hx + v)||2p(x)dx (34)

In general, it is intractable to find a closed-form solution to this problem due
to the nonlinearity of z = h(x). To go around it, the LRKF randomly selects
r + 1 weighted sample points, {Xi, wi}ri=0, so that their sample mean and
covariance are equal to the true mean and covariance of x:

x̄ =
r∑
i=0

wiXi = E(x) (35)

P̄xx =
r∑
i=0

wi (Xi − x̄) (Xi − x̄)T = E
[
(x− x̄)(x− x̄)T

]
(36)

where E(·) is the expectation operator. Using the standard sample-based

approximation p(x) '
r∑
i=0

wiδ(x−Xi), where δ(·) is the Dirac delta function,

the linear regression problem (34) becomes:

min
H,v

r∑
i=0

wi||Zi − (HXi + v)||2 (37)

where Zi := h(Xi), whose linearization error is denoted by ei := Zi− (HXi+
v). The optimal solutions of (37) for H and v are given by [16]:

H = P̄zxP̄−1xx , v = z̄−Hx̄ (38)

where

z̄ =
r∑
i=0

wiZi (39)

P̄zx =
r∑
i=0

wi (Zi − z̄) (Xi − x̄)T (40)

P̄zz =
r∑
i=0

wi (Zi − z̄) (Zi − z̄)T (41)
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With (38), we obtain the linear approximation for the nonlinear function
z = h(x), without performing Taylor series expansion. Rather than sam-
pling randomly as in the LRKF presented above, the unscented transform (or
statistical linearization) employed by the UKF [15] deterministically selects
2n + 1 so-called sigma points Xi, along with their weights wi, i = 1, . . . , n,
according to the following equations:

X0 = x̄ , w0 =
2κ

2(n+ λ)
(42)

Xi = x̄ +

[√
(n+ λ)P̄xx

]
i

, wi =
1

2(n+ λ)
(43)

Xi+n = x̄−
[√

(n+ λ)P̄xx

]
i

, wi+n =
1

2(n+ λ)
(44)

where n is the dimension of x̄ (i.e., n = dim(x̄)),
[√

(n+ λ)P̄xx

]
i

is the

i-th column of the matrix
√

(n+ λ)P̄xx, and λ is a design parameter in the
selection of the sigma points, usually chosen so that n + λ = 3. This set of
sigma points captures the moments of the underlying distribution up to the
third-order for the Gaussian case [15]. Once the sigma points are generated,
the unscented transform (UKF) computes the regression matrix H as in (38)
which is often considered as the inferred, unscented, Jacobian, in analogy to
the Jacobian in the EKF.

5.2. The proposed algorithm

The unscented transform (statistical linearization) described above pro-
vides a numerical, instead of analytical, way to compute Jacobians and
achieve reduced linearization errors for many nonlinear estimation problems
(e.g., [38]). We expect the similar gain when using it to compute the inferred
unscented Jacobians, and thus the Hessian, in the unscented incremental
smoothing. Moreover, we also expect that the resulting inferred unscented
Hessian has similar observability properties as that of the batch-MAP esti-
mator, in particular, a nullspace of dimension three (see Section 4). However,
this in general is not the case. When numerically computing the dimension
of the nullspace of the unscented Hessian, we find that it is three only for
the first few time steps, and decreases quickly as more measurements be-
come available. This indicates that the naive UIS (i.e., directly applying the
standard unscented transform to compute the Jacobians and thus Hessians,
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without imposing any constraint to ensure appropriate observability as in the
proposed UIS presented below) acquires spurious information from the avail-
able measurements, in the directions of the state space where no information
is actually available, which may degrade the performance (see Section 6).

To address the aforementioned issue, we explicitly enforce the appropriate
observability constraints on the unscented transform (linear regression) (37)
such that the resulting unscented Hessian possesses the desired nullspace, i.e.,

min
H,v

r∑
i=0

wi||Zi − (HXi + v)||2 (45)

subject to AN = 0 (46)

where N is a design choice that defines the desired nullspace of dimension
three for the Hessian matrix A of the proposed UIS [see (26)]. Although,
ideally we would like to have such a nullspace to be the one for the batch-MAP
estimator (33), this is not possible during incremental estimation, because the
noncausal, smoothed state estimates (i.e., x̂(`|k) where ` < k, that is, using
the information from future measurements) are used in batch estimation (33),
while these estimates are not available yet before executing the incremental
estimator. Therefore, we instead choose the nullspace in the same form as
that of the batch-MAP estimator (33), while evaluating it at the causal,
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propagated state estimates, x̂(k|k − 1), for all the times, i.e.,

N(k) = span
col.



I2 Γp̂R1(0|0)
0 1
...

...
I2 Γp̂R1(k|k − 1)
0 1
...

...
...

...
I2 Γp̂RM

(0|0)
0 1
...

...
I2 Γp̂RM

(k|k − 1)
0 1

I2 Γp̂T1(0|0)

0 (Idim(dT1
)/2 ⊗ Γ)d̂T1(0|0)

...
...

I2 Γp̂T1(k|k − 1)

0 (Idim(dT1
)/2 ⊗ Γ)d̂T1(k|k − 1)

...
...

...
...

I2 Γp̂TN (0|0)

0 (Idim(dTN
)/2 ⊗ Γ)d̂TN (0|0)

...
...

I2 Γp̂TN (k|k − 1)

0 (Idim(dTN
)/2 ⊗ Γ)d̂TN (k|k − 1)



(47)

Once the nullspace, N(k), is determined, we are now to find the desired
Jacobians and Hessian matrices. For simplicity of notations, we denote the
propagation and measurement Jacobians [i.e., each block row in (24)] gener-
ically by H. Using (24) and (26), it is not difficult to show that

HN = 0 ⇒ JN = 0 ⇒ JTJN = AN = 0 (48)

This implies that in order to ensure the Hessian A to have N as its desired
nullspace, we only need to ensure the Jacobians to have the same nullspace.
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Now we solve the constrained linear regression (unscented transform) (45)-
(46) by seeking the desired Jacobian H(k) as the one closest to the most ac-
curate Jacobian Ho(k), which is computed by the canonical, unconstrained
unscented transform [see (42)-(44), (37), and (38)], while satisfying the ob-
servability constraint [see (48)]. This can be formulated as the following
constrained minimization problem:

min
H(k)

||Ho(k)−H(k)||2F (49)

subject to H(k)N(k) = 0 (50)

where || · ||F denotes the Frobenius norm.
It is important to point out that in order to save computations, we should

exploit the sparse structure of the propagation and measurement Jacobians
[see (6), (15) and (19)]. Specifically, only nonzero entries of these matrices
are considered as the optimization variables in the problem (49) and (50), and
thus only the corresponding components of the nullspace N(k) are accord-
ingly used in (50). To keep the presentation concise, in the above problem
formulation we assume H, Ho and N already consist only of the nonzero
submatrices of the corresponding ones. The optimal, closed-form solution to
the problem (49) and (50) is obtained based on the following lemma:

Lemma 5.1. The optimal solution to the constrained minimization prob-
lem (49) and (50) is given by:

H(k) = Ho(k)
(
In −N(NTN)−1NT

)
(51)

Proof. See Appendix B.

It is interesting to note that since N in (51) is the unobservable subspace
(nullspace) at time-step k,

(
In −N(NTN)−1NT

)
is the subspace orthogonal

to N, i.e., the observable subspace at time-step k. Hence, as seen from (51),
H(k) is the projection of the canonical unscented Jacobian onto the observ-
able subspace so that no spurious information is acquired from the measure-
ments. Note also that once H(k) is found, it is easy to recover the full desired
Jacobians by padding zeros to match the correct dimensions [see (6), (15)
and (19)]. The main steps of the proposed UIS are outlined in Algorithm 1.
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Algorithm 1 Unscented Incremental Smoothing (UIS) Algorithm

1: At each incremental step
2: Construct the desired nullspace N (47).
3: Compute the canonical measurement Jacobian Ho through the standard

unscented transform [see (42)-(44), (37), and (38)].
4: Project Ho onto the observable subspace to obtain H (51).
5: Augment the Jacobian Ja (32) with the new unscented measurement Ja-

cobian H padded with zeros to match dimensions [see (6), (15) and (19)].
6: Perform QR for Ja using Givens rotations.
7: Solve for δx by QR factorization (28).
8: Update the state estimate (31).

9: At periodic batch step
10: Relinearize all the available measurements and compute the whole Ja-

cobian matrix J (24) and residual vector r (25).
11: Solve for δx by QR factorization (28).
12: Update the state estimate (31).

6. Simulation Results

In order to validate the proposed UIS algorithm for the CLATT problem,
a series of Monte Carlo simulations were conducted under various conditions,
such as different types of measurements, different target kinematic models,
and different numbers of robots and targets. In the simulation tests, we
consider the scenarios in which a team of mobile robots randomly move
in an area of size 50 m × 50 m and track multiple moving targets. For
example, Fig. 1 shows the typical trajectories of robots and targets, which
are obtained from one realization of the Monte Carlo trials. It is important
to point out that in this work we concentrate solely on estimation and do not
intend to address (optimal) motion planning for the tracking robots, although
the estimation (tracking and localization) performance can be improved if
adopting an optimal motion strategy [39]. Thus, in the following tests, we
focus on such adverse scenarios with random robot motion in order to show
the localization and tracking capability of the proposed estimation algorithm,
while in the ensuing experiment, we integrate the optimal motion of tracking
robots [39] to further validate the proposed approach.
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Figure 1: A team of mobile robots move randomly inside a 50 m × 50 m arena and
cooperatively track multiple targets whose motions follow (a) constant-velocity and (b)
constant-acceleration kinematic models. Starting positions of the robots are marked by©
and those of the targets by4. Note that this is one realization of Monte Carlo simulations.

6.1. Range-only measurements and constant-velocity model

In the first test, four identical robots with a simple differential drive
model start from the same location and randomly move on a planar surface
at a constant linear velocity of v = 0.5 m/sec, while the rotational velocities
are drawn from the uniform distribution over [−0.5, 0.5] rad/sec. The two
drive wheels are equipped with encoders, which measure their revolutions
and provide measurements of velocity (i.e., right and left wheel velocities,
vr and vl, respectively), with standard deviation equal to σ = 2%v for each
wheel. These measurements are used to obtain the linear and rotational
velocity measurements for the robots, which are given by:

v =
vr + vl

2
, ω =

vr − vl
a

(52)

where a = 0.5 m is the distance between the active wheels. Thus, the
standard deviations of the linear and rotational velocity measurements are
σv =

√
2
2
σ and σω =

√
2
a
σ, respectively.

In this test, we adopt a constant-velocity or zero-acceleration kinematic
model for the two targets [25]:

ẋTi(t) = FTixTi(t) + GTiwTi(t) (53)
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where

FTi =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 , GTi =


0 0
0 0
1 0
0 1

 , xTi(t) =


xTi(t)
yTi(t)
ẋTi(t)
ẏTi(t)

 (54)

and wTi(t) =
[
wx(t) wy(t)

]T
is zero-mean, white Gaussian noise with covari-

ance E
[
wTi(t)wTi(τ)T

]
= qI2δ(t−τ), q = 0.01, and δ(t−τ) is the Dirac delta

function. In our implementation, we discretize the continuous-time kinematic
model (53) with time step δt = 1 sec. We stress that a known kinematic
model such as the above constant-velocity model and the below constant-
acceleration model is a common assumption for target tracking, while accu-
rately modelling a target’s motion is out of scope of this work. Nevertheless,
by choosing appropriate driven white noise [see (53)], such stochastic models
are able to describe a wide range of target motions in practice [25]. The

initial true state of the target is xTi(0) =
[
10 −10 −0.1 0.1

]T
, while the

initial estimate of the target state is set to x̂Ti(0|0) ∼ N (xTi(0),PTi(0|0)),
with the initial covariance PTi(0|0) = Diag(I2, 10−2I2). Fig. 1(a) depicts one
example of the trajectories of the robots and targets.

While any type of measurements is applicable for the proposed algorithm,
we here first consider the range-only case where each robot records distance
measurements to all the other robots and targets. Note that for simplicity we
assume that each robot can observe all others at every time step. However,
this is not a necessary assumption, as the analysis can easily be extended to
the case where multiple propagation steps occur between measurement up-
dates (e.g., limited sensing range, or different sampling frequencies between
proprioceptive and exteroceptive sensors). In this test, data association is
also assumed to be known in order to isolate its negative impact on the
estimation performance and focus on the estimation algorithm itself. The
standard deviation, σd, of the distance measurement noise is set to be 3% of
the actual distance, which is relatively larger than what is typically encoun-
tered in practice. This is done purposefully, since larger noise leads to higher
estimation errors and makes the comparison more apparent.

In this test, we perform 50 Monte Carlo simulations and compare four
estimators: (i) the batch MAP, which is the best achievable in practice and
serves as the benchmark, (ii) the standard iSAM [19], which computes the
Jacobians and thus Hessians analytically, (iii) the naive UIS, which directly
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(c) Robot 3
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(d) Robot 4

Figure 2: [Range-Only Constant-Velocity] Monte Carlo results for the four tracking robots’
poses (positions and orientations). In these plots, the solid lines correspond to the batch
MAP, the dashed lines to the standard iSAM, the dash-dotted lines to the naive UIS, and
the solid lines with circles to the proposed UIS.
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employs the standard unscented transform to compute the Jacobians, and
(iv) the proposed UIS, which enforces the appropriate observability constraint
in the unscented transform. Note that the three incremental smoothing al-
gorithms (i.e., the iSAM, and the two UIS) relinearize all the available mea-
surements and perform a batch update periodically every 20 time steps. This
number can be selected in a more intelligent manner, for example, by tak-
ing into account the measurement noise, or by monitoring the quality of the
current state estimates [21].

The comparison results of root mean squared errors (RMSE) [25] which
quantify the estimation accuracy, are shown in Figs. 2 and 3 and Table 1.
Specifically, Figs. 2 and 3 depict the RMSE over time for the four robots and
two targets, respectively, while Table 1 averages these results over all the
times and over all the simulations. As expected, the batch MAP estimator is
optimal up to linearization errors and achieves the best accuracy. Since the
naive UIS directly uses unscented transform to compute Jacobians numeri-
cally, which is expected to achieve reduced linearization errors as compared
to the standard analytical way of computing Jacobians, it can perform better
than the standard iSAM. However, as discussed before, the naive UIS does
not ensure correct observability properties, which degrades its performance
as shown in Figs. 2 and 3. Note that the periodic fluctuations in these fig-
ures are due to the periodic batch update carried out every 20 time steps by
the three incremental smoothers. From these results, it becomes clear that
the proposed UIS outperforms the other two incremental smoothing algo-
rithms and performs closest (in particular, for the robot localization) to the
benchmark, the batch MAP estimator. This is attributed to the fact that
the proposed UIS not only employs the unscented transform to improve the
accuracy of linearization approximation, but ensures the correct observabil-
ity properties so that no spurious information is gained from the available
measurements.

6.2. Bearing-only measurements and constant-acceleration model

To further validate the proposed UIS algorithm, we now consider the
bearing-only CLATT case of significant nonlinearity, where the tracking
robots measure relative bearing angles to the other robots and targets, with
the standard deviation of measurement noise equal to σθ = 3 deg. In this test,
we deploy six robots with the same model as in the preceding simulations to
track three targets whose motions however follow a constant-acceleration or
zero-jerk kinematic model [25]. In this case, the continuous-time kinematic
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(b) Target 2

Figure 3: [Range-Only Constant-Velocity] Monte Carlo results for the two targets’ states
(positions and velocities). In these plots, the solid lines correspond to the batch MAP, the
dashed lines to the standard iSAM, the dash-dotted lines to the naive UIS, and the solid
lines with circles to the proposed UIS.

Table 1: [Range-Only Constant-Velocity] Robot and Target Estimation Errors

iSAM [19] Naive-UIS UIS MAP

Robot Position RMSE (m)

Robot 1: 2.4906 0.9349 0.6590 0.5782

Robot 2: 1.6401 0.7129 0.6444 0.5596

Robot 3: 2.3422 0.8935 0.7383 0.6504

Robot 4: 2.5375 0.9596 0.7270 0.6343

Robot Heading RMSE (rad)

Robot 1: 0.2221 0.0987 0.0908 0.0590

Robot 2: 0.2141 0.1055 0.0958 0.0703

Robot 3: 0.2056 0.1304 0.0974 0.0652

Robot 4: 0.1702 0.0976 0.0945 0.0654

Target Position RMSE (m)

Target 1: 3.2570 1.3278 0.9591 0.4833

Target 2: 2.1561 1.1266 0.8951 0.4623

Target Velocity RMSE (m/sec)

Target 1: 0.4868 0.2223 0.1123 0.0285

Target 2: 0.2142 0.1465 0.1072 0.0274
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model parameters for the i-th (i = 1, 2, 3) target become [see (53) and (54)]:

FTi =


0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

 , GTi =


0 0
0 0
0 0
0 0
1 0
0 1

 , xTi(t) =


xTi(t)
yTi(t)
ẋTi(t)
ẏTi(t)
ẍTi(t)
ÿTi(t)

 (55)

The covariance of white jerk noise wTi(t) is set to 10−3I2δ(t − τ). The ini-
tial acceleration is equal to 10−6 m/sec2, while all the other parameters are
identical to those used in the preceding test. Fig. 1(b) shows the trajectories
of the robots and targets, which are obtained from one Monte Carlo trial.

Similarly, we conduct 50 Monte Carlo simulations and compare: (i) the
batch MAP, (ii) the iSAM [19], and (iii) the proposed UIS. Since the previous
simulation results have already demonstrated the naive UIS (which can be
considered as an intermediate step to our proposed UIS) does not work as well
as the proposed algorithm, we hereafter omit the comparison to it in order
to make presentation concise. The comparative results are shown in Figs. 4
and 5 and Table 2. As evident, these results are very similar to the ones in
the previous simulations: Even with different type of sensor measurements,
different target kinematic model, and different number of robots and targets,
the proposed UIS still performs better than the standard iSAM, which is
attributed to its reduced linearization errors due to unscented transform and
correct observability properties.

7. Experimental Results

In this section, we present a real-world experiment conducted in a con-
trolled indoor environment to further test the proposed UIS algorithm for a
CLATT scenario, where the tracking robots follows an optimal motion strat-
egy, rather than randomly as in the preceding simulations. During this test,
three Pioneer-III robots – one acting as the moving target and the others serv-
ing as the tracking sensors – moved inside a rectangular arena of 4 m × 3 m,
and their poses (positions and orientations) were being tracked by an over-
head camera. For this purpose, rectangular tracking patterns were mounted
on top of the robots and the vision system was calibrated in order to pro-
vide ground-truth measurements of the robots’ poses in a global coordinate

30



0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

R
o

b
o

t 
p

o
s

it
io

n
 R

M
S

E
 (

m
)

 

 

iSAM

UIS

MAP

0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (sec)

R
o

b
o

t 
h

e
a

d
in

g
 R

M
S

E
 (

ra
d

)

(a) Robot 1

0 20 40 60 80 100 120
0

0.5

1

1.5

R
o

b
o

t 
p

o
s

it
io

n
 R

M
S

E
 (

m
)

 

 

iSAM

UIS

MAP

0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

Time (sec)

R
o

b
o

t 
h

e
a

d
in

g
 R

M
S

E
 (

ra
d

)
(b) Robot 2
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(c) Robot 3
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(d) Robot 4
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(e) Robot 5
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(f) Robot 6

Figure 4: [Bearing-Only Constant-Acceleration] Monte Carlo results for the six tracking
robots’ poses (positions and orientations). In these plots, the solid lines correspond to the
batch MAP, the dashed lines to the standard iSAM, and the solid lines with circles to the
proposed UIS.
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(b) Target 2

0 20 40 60 80 100 120
0

1

2

3

4

5

T
a
rg

e
t 

p
o

s
it

io
n

 R
M

S
E

 (
m

)

 

 

iSAM

UIS

MAP

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

Time (sec)

T
a
rg

e
t 

v
e
lo

c
it

y
 R

M
S

E
 (

m
/s

e
c
)

(c) Target 3

Figure 5: [Bearing-Only Constant-Acceleration] Monte Carlo results for the three targets’
states (positions and velocities). In these plots, the solid lines correspond to the batch
MAP, the dashed lines to the standard iSAM, and the solid lines with circles to the
proposed UIS. Note that we omit the visualization of targets’ accelerations in order to
preserve consistent and concise presentation as before, while these results are similar to
the ones presented here.
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Table 2: [Bearing-Only Constant-Acceleration] Robot and Target Estimation Errors

iSAM [19] UIS MAP

Robot Position RMSE (m)

Robot 1: 0.7268 0.6213 0.4701

Robot 2: 0.8785 0.7652 0.6837

Robot 3: 0.8203 0.7303 0.5562

Robot 4: 0.7023 0.6507 0.5202

Robot 5: 0.8799 0.8112 0.7260

Robot 6: 0.7554 0.6425 0.4857

Robot Heading RMSE (rad)

Robot 1: 0.0971 0.0674 0.0421

Robot 2: 0.0940 0.0714 0.0441

Robot 3: 0.1042 0.0652 0.0369

Robot 4: 0.0706 0.0707 0.0398

Robot 5: 0.0610 0.0698 0.0419

Robot 6: 0.0722 0.0732 0.0424

Target Position RMSE (m)

Target 1: 5.0386 2.4039 0.3424

Target 2: 4.6294 2.2274 0.3251

Target 3: 3.2746 2.2967 0.3296

Target Velocity RMSE (m/sec)

Target 1: 0.2614 0.1737 0.0147

Target 2: 0.2483 0.1700 0.0140

Target 3: 0.1820 0.1700 0.0141
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Figure 6: Experimental setup: (a) Calibrated image of three Pioneer III robots, each of
which is mounted a pattern board attached on its top. The target is located at the bottom
right of the image, while the other two robots act as tracking sensors. (b) Trajectories
of the three robots (target and sensor) that move inside a 4 m × 3 m arena during the
indoor experiment. The symbol B denotes the starting positions of the tracking robots,
while � is the starting position of the target.

frame. The standard deviation of the noise in these measurements was ap-
proximately 0.5 deg for orientation and 0.01 m, along each axis, for position.
The target robot was commanded to move along a straight line at a constant
velocity of v = 0.1 m/sec, and thus a constant-velocity kinematic model with

q = 0.001
(

m
sec2

)2 1
Hz

was used to describe this motion [see (53)], while the
tracking robots were operated based on the optimal motion planning that
minimizes the one-step-ahead uncertainty of the target [39]. Fig. 6(a) shows
a snapshot of the experiment, and Fig. 6(b) depicts the true trajectories of
the target and the sensor.

In this test, the initial true state of the target, computed from the over-

head camera, was xT (0) =
[
0.23 0.16 0.05 0.01

]T
, while the initial esti-

mate for the targets state was set to xT (0) =
[
0 0 0 0

]T
. The two tracking

robots started at pR1(0) =
[
0.20 1.69

]T
and pR2(0) =

[
2.34 0.17

]T
, respec-

tively. The maximum speed for each tracking robot was set to 0.12 m/sec,
and the minimum distance between the target and robots was 1 m. We con-
sider the scenario where each tracking robot measures only relative bearing
to the target (as compared to the simulations presented in preceding section
where distance-only measurements were used). Relative bearing measure-
ments were produced synthetically using the differences in the positions of
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Figure 7: [Experimental Results] Estimation errors for the two tracking robots’ poses
(positions and orientations). In these plots, the dashed lines correspond to the batch
MAP, the dash-dotted lines to the iSAM, and the solid lines to the proposed UIS.

the target robot and the tracking robots, as these were recorded by the over-
head camera, with the addition of noise. For the experimental results shown
in the following, the bearing measurements were corrupted by zero-mean
white Gaussian noise, with standard deviation σθ = 1 deg.

The same three estimators as in the preceding simulation test are im-
plemented, i.e., the batch MAP, the standard iSAM, and the proposed UIS,
while the two incremental smoothers perform periodic batch updates every
10 time steps. The comparative results are shown in Figs. 7 and 8, and Ta-
ble 3. In particular, Fig. 7 depicts the estimation errors for the two tracking
robots and Fig. 8 shows the target results, while Table 3 shows the results
averaged over all the time steps. It becomes clear that the batch MAP gen-
erally performs the best and well serves as a comparable benchmark, and the
proposed UIS achieves better accuracy than the standard iSAM, which agrees
with the previous Monte-Carlo simulation results. It should be noted that
the proposed UIS outperforms the standard iSAM in both bearing-only and
range-only cases, and both constant-velocity and constant-acceleration mod-
els, which indicates that the UIS is truly a general incremental estimation
algorithm applicable to any measurement/motion model.

8. Conclusions and Future Work

In this paper, we have introduced a new consistent unscented incremental
smoothing (UIS) algorithm for multi-robot cooperative target tracking (i.e.,

34



0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

T
a

rg
e

t 
p

o
s

it
io

n
 e

rr
o

r 
(m

)

 

 

iSAM

UIS

MAP

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

Time (sec)

T
a

rg
e

t 
v

e
lo

c
it

y
 e

rr
o

r 
(m

/s
e

c
)

Figure 8: [Experimental Results] Estimation errors for the target state (position and
velocity). In these plots, the dashed lines correspond to the batch MAP, the dash-dotted
lines to the iSAM, and the solid lines to the proposed UIS.

CLATT problem), which is of practical significance when a team of robots
operate in dynamic environments. By performing parameter observability
analysis, we have proved that in the case of no prior, the FIM (Hessian) of
the optimal batch-MAP based CLATT system has a nullspace of dimension
three, corresponding to the global state of the system. However, in general,
this is not the case for an incremental smoother (i.e., the naive UIS) that
directly employs the canonical unscented transform to numerically compute
the inferred, unscented, Jacobians, and thus the Hessians, even though it
attains reduced linearization errors. In order to ensure that the Hessian of
the UIS has a nullspace of correct dimensions, the proposed UIS explicitly
enforces the appropriate observability constraint on the unscented transform
when computing Jacobians, which renders the optimal solution as the projec-
tion of the canonical Jacobians computed by the standard unscented trans-
form onto the desired observable subspace. The proposed approach has been
tested extensively in both Monte Carlo simulations and real-world experi-
mental tests, and is shown to perform significantly better than the standard
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Table 3: [Experimental Results] Robot and Target Estimation Errors

iSAM [19] UIS MAP

Robot Position Estimation Error (m)

Robot 1: 1.1439 1.0463 0.6126

Robot 2: 0.9303 0.8427 0.5028

Robot Heading Estimation Error (rad)

Robot 1: 0.0193 0.0181 0.0179

Robot 2: 0.0218 0.0227 0.0263

Target Position Estimation Error (m)

Target: 0.9847 0.7952 0.5971

Target Velocity Estimation Error (m/sec)

Target: 0.0678 0.0652 0.0465

incremental smoothing such as iSAM. In the future, we plan to extend the
proposed algorithm to 3D, analytically study the effect of the team size on
the estimation performance, and also design optimal motion planning within
the proposed incremental estimation framework in order to achieve better
localization and tracking performance.

Appendix A. Proof of Lemma 4.1

We assume a variable reordering of first all the robot poses, then all the
target states. This assumption is employed only to simplify the notation and
does not affect the results of the analysis, since the ordering of the variables
does not change the rank and nullspace of the Hessian matrix. Using the
sparse structure of the robot propagation Jacobian FRi

, we have (note that
zeros in FRi

annihilate the corresponding nonzero submatrices in Nb in the
following matrix multiplication) [see (6) and (8)]:

FRi
(k − 1)Nb(k)

=

[
−I2 −Γ (p̂Ri

(k|k)− p̂Ri
(k − 1|k)) I2 0

0 −1 0 1

]
I2 Γp̂Ri

(k − 1|k)
0 1
I2 Γp̂Ri

(k|k)
0 1


= 0 (A.1)
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Using the sparse structure of the robot-to-robot measurement Jacobian, we
have [see (15), (16), and (17)]:

HRij
(k)Nb(k)

=


p̂T
Ri

(k|k)−p̂T
Rj

(k|k)

||p̂T
Rj

(k|k)−p̂T
Ri

(k|k)|| 0
p̂T
Rj

(k|k)−p̂T
Ri

(k|k)

||p̂T
Rj

(k|k)−p̂T
Ri

(k|k)|| 0

(p̂T
Ri

(k|k)−p̂T
Rj

(k|k))ΓT

||p̂T
Rj

(k|k)−p̂T
Ri

(k|k)||2 −1
(p̂T

Rj
(k|k)−p̂T

Ri
(k|k))ΓT

||p̂T
Rj

(k|k)−p̂T
Ri

(k|k)||2 0




I2 Γp̂Ri
(k|k)

0 1
I2 Γp̂Rj

(k|k)
0 1


= 0 (A.2)

Similarly, we also have [see (19)]:

HTij(k)Nb(k)

=


p̂T
Ri

(k|k)−p̂T
Tj

(k|k)

||p̂T
Tj

(k|k)−p̂T
Ri

(k|k)|| 0
p̂T
Tj

(k|k)−p̂T
Ri

(k|k)

||p̂T
Tj

(k|k)−p̂T
Ri

(k|k)|| 0

(p̂T
Ri

(k|k)−p̂T
Tj

(k|k))ΓT

||p̂T
Tj

(k|k)−p̂T
Ri

(k|k)||2 −1
(p̂T

Tj
(k|k)−p̂T

Ri
(k|k))ΓT

||p̂T
Tj

(k|k)−p̂T
Ri

(k|k)||2 0




I2 Γp̂Ri
(k|k)

0 1
I2 Γp̂Tj(k|k)

0 (Iα ⊗ Γ)d̂Tj(k|k)


= 0 (A.3)

where α = dim(dTi)/2.
In order to show FTi(k − 1)Nb(k) = 0, we first notice that a stochastic

motion model (e.g., constant-velocity model, or constant-acceleration model)
for the ith target can be written in the following general form:

pTi(k) = pTi(k − 1) + (ft ⊗ I2) dTi(k − 1) + GTi(k − 1)wTi(k − 1) (A.4)

dTi(k) = (Ft ⊗ I2) dTi(k − 1) (A.5)

where δt is the sampling time interval between time-steps k−1 and k; ft and
Ft are a row vector and a square matrix, respectively, which are functions
of δt, and whose expressions depending on the particular stochastic motion
model used. Clearly the target propagation Jacobian evaluated is given by:

ΦTi(k − 1) =

[
I2 ft ⊗ I2
0 Ft ⊗ I2

]
(A.6)

Based on the structure of this Jacobian as well as the state-estimate propa-
gation equation evaluated at the smoothed state estimates, x̂Ti(k− 1|k) and
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x̂Ti(k|k), and the expected noise vector equal to zero (i.e., ŵTi(k−1|k) = 0),
we have [see (A.6), (A.4), (A.5), and (13)]:

FTi(k − 1)Nb(k)

=

[
−I2 −ft ⊗ I2 I2 0
0 −Ft ⊗ I2 0 I2α

]
I2 Γp̂Ti(k − 1|k)

0 (Iα ⊗ Γ)d̂Ti(k − 1|k)
I2 Γp̂Ti(k|k)

0 (Iα ⊗ Γ)d̂Ti(k|k)


=

[
0 −Γp̂Ti(k − 1|k)− (ft ⊗ I2) (Iα ⊗ Γ) d̂Ti(k − 1|k) + Γp̂Ti(k|k)

0 − (Ft ⊗ I2) (Iα ⊗ Γ) d̂Ti(k − 1|k) + (Iα ⊗ Γ) d̂Ti(k|k)

]
=

[
0 −Γp̂Ti(k − 1|k)− Γ (ft ⊗ I2) d̂Ti(k − 1|k) + Γp̂Ti(k|k)

0 − (Iα ⊗ Γ) (Ft ⊗ I2) d̂Ti(k − 1|k) + (Iα ⊗ Γ) d̂Ti(k|k)

]

=

0 −Γ
[
p̂Ti(k − 1|k)− (ft ⊗ I2) d̂Ti(k − 1|k)

]
+ Γp̂Ti(k|k)

0 − (Iα ⊗ Γ)
[
(Ft ⊗ I2) d̂Ti(k − 1|k)

]
+ (Iα ⊗ Γ) d̂Ti(k|k)


= 0 (A.7)

where in the third equality we have employed the mixed-product property of
a Kronecker product [40]:

(ft ⊗ I2) (Iα ⊗ Γ) = (ftIα)⊗ (I2Γ) = ft ⊗ Γ

= (1⊗ Γ) (ft ⊗ I2) = Γ (ft ⊗ I2) (A.8)

(Ft ⊗ I2) (Iα ⊗ Γ) = (FtIα)⊗ (I2Γ) = (Iα ⊗ Γ) (Ft ⊗ I2) (A.9)

As an example to illustrate the above identity (A.7), we here consider the
constant-velocity motion model (53) that is most commonly used in practice,
and whose expressions are given by [see (A.4), and (A.5)]:

pT (k) = pT (k − 1) + dT (k − 1)δt+ GTi(k − 1)wTi(k − 1) (A.10)

dT (k) = dT (k − 1) (A.11)

In this case, ft = δt and Ft = 1. Thus, the target propagation Jacobian
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becomes ΦTi(k − 1) =

[
I2 I2δt
0 I2

]
. By noting α = 1, we have:

FTi(k − 1)Nb(k) =

[
−I2 −I2δt I2 0
0 −I2 0 I2

]
I2 Γp̂Ti(k − 1|k)

0 Γd̂Ti(k − 1|k)
I2 Γp̂Ti(k|k)

0 Γd̂Ti(k|k)

 = 0

(A.12)

which clearly is a special case of (A.7).
Finally, based on the identities (A.1), (A.7), (A.2), and (A.3), we imme-

diately have the following equivalence [see (24) and (26)]:

JNb = 0 ⇒ 0 = JTJNb = AbNb (A.13)

This completes the proof.

Appendix B. Proof of Lemma 5.1

From (50) we know that H is the left nullspace of the matrix N. By
denoting L the matrix whose rows span this nullspace, we can write H as:

H = ΘL (B.1)

where Θ is the unknown matrix we seek to find. Note that there are several
possible ways of computing an appropriate matrix L, whose rows lie in the
left nullspace of N. For instance, such a matrix is given, in closed form, by
the expression:

L =
[
Im 0m×(n−m)

] (
In −N(NTN)−1NT

)
=: ΨΠ (B.2)

where n is the dimension of the state and m is the dimension of the measure-
ment. It is not difficult to see that Π := In−N(NTN)−1NT is an orthogonal
projection matrix (i.e., Π2 = Π and ΠT = Π) and hence has the eigenvalues
of either 1 or 0, whose reduced SVD is given by Π = UUT . Using this
result, LT immediately can be written as LT = UUTΨT . By substituting
this identity into the cost function (49), we have:

min ||Ho −H||2F = ||UTΨTΘT −UTHo
T ||2F

⇒ Θ = HoU (ΨU)−1 (B.3)

39



Therefore, substitution of the above equation in (B.1) yields:

H = HoU (ΨU)−1 ΨUUT = HoUUT = HoΠ

= Ho

(
In −N(NTN)−1NT

)
(B.4)

This completes the proof.
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