
A Metastudy of Algorithm Lower Bounds

by

Emily Liu

B.S. in Computer Science and Engineering, Massachusetts Institute of
Technology (2021)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2021

© Massachusetts Institute of Technology 2021. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

July 9, 2021

Certified by. .
Neil Thompson

Research Scientist
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis

2

A Metastudy of Algorithm Lower Bounds

by

Emily Liu

Submitted to the Department of Electrical Engineering and Computer Science
on July 9, 2021, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Algorithms are essential to the field of computer science, and algorithm designers are
always searching for the mathematically optimal algorithms. Sherry and Thompson
found that improvements to algorithm upper bounds have been steadily decreasing
since the 1970s. In this work we aim to discover whether this could be because
researchers have already found the optimal versions of many algorithms. In order to
get a better sense of the picture, we compiled lower bounds on the algorithm families
studied by Sherry and Thompson. We find that, while a few problems still have large
gaps between upper and lower bounds where improvement is possible, over three-
quarters of these problems are already very close to being optimal! The “slowing
progress” may in fact prove to be a triumph in disguise, as it is an indicator that
many problems have achieved optimal solutions.

Thesis Supervisor: Neil Thompson
Title: Research Scientist

3

4

Acknowledgments

I feel so lucky to have had such excellent support throughout the process of completing

this thesis. I could not have asked for better people in my life during the past year,

especially during a pandemic and through a personal emergency.

First and foremost, I would like to thank my thesis advisor, Dr. Neil Thompson.

I am grateful that he gave me the opportunity to work with him, on such an inter-

esting and exciting project. Neil’s feedback and direction related to the project have

been essential, and his consistent support, kindness, and encouragement have been

invaluable.

I would also like to thank William Kuszmaul for his mentorship. He provided

careful guidance and excellent advice, without which I would certainly have been

lost. From walking me through the initial research process to meticulously reading

over every line of my manuscript, Bill has always been there to answer any questions

and provide feedback.

I am grateful to Yash Sherry for his great help in making this project come to-

gether. Yash generously provided resources and worked tirelessly with me to make

this project the best it could be.

To my friends, thank you for making my MIT experience so memorable. A special

thanks goes to FEHJM House for being a highlight of the past year.

To my family, thank you for supporting and encouraging me always, and for having

faith in me. I would not be who I am today without you.

Contributions

This thesis is based on joint work with Dr. Neil Thompson, William Kuszmaul, and

Yash Sherry. Neil conceived of and provided direction for the project as a whole,

Bill helped shape it with his insights and suggestions for analysis, Yash brought his

expertise and experience from his previous work with Neil, and I performed the data

collection and analysis. I wrote the thesis, with Bill and Neil reviewing. We are

planning to submit a co-authored version of this paper for publication.

5

Funding

This work was supported in part by the Tides Foundation (1903-57432), NSF grant

2041897, an NSF GRFP fellowship, and a Fannie and John Hertz Fellowship.

Research was also partially sponsored by the United States Air Force Research

Laboratory and was accomplished under Cooperative Agreement Number FA8750-

19-2-1000. The views and conclusions contained in this document are those of the

authors and should not be interpreted as representing the official policies, either

expressed or implied, of the United States Air Force or the U.S. Government. The

U.S. Government is authorized to reproduce and distribute reprints for Government

purposes notwithstanding any copyright notation herein.

6

Contents

1 Introduction 11

1.1 Upper and Lower Bounds . 12

1.2 History . 14

2 Results 15

2.1 Examples . 16

2.1.1 Matrix Chain Multiplication 16

2.1.2 Sequence Alignment . 18

2.2 Summary of Results . 19

2.2.1 Overall Optimality . 19

2.2.2 Remaining Opportunities for Algorithmic Improvement 20

3 Discussion 23

3.1 The Decline of Algorithm Progress 23

3.2 The Evolution of Lower-Bound Techniques 25

4 Methods 27

4.1 Overview . 27

4.2 Algorithm Family Refinements . 28

4.3 Analysis . 29

A Lower Bound Data 31

7

8

List of Figures

1-1 Historical trends of algorithm progress 13

2-1 The upper and lower bounds of algorithm families over time 17

2-2 Aggregate upper and lower bound data 21

3-1 Use of conjectures in proving lower bounds 24

9

10

Chapter 1

Introduction

An algorithm is an unambiguous sequence of instructions to solve a clearly defined

problem. Algorithms are the step-by-step procedures that computers follow, and they

are what allow computers to execute so many tasks so cleverly, in turn allowing re-

searchers to approach problems in many different subject areas. The field of computer

science has improved by leaps and bounds since it seriously began in the 1940s, and

much of the progress has been in or due to algorithms. In fact, for many problems,

algorithmic improvements have outpaced hardware improvements [48].

Recent work by Sherry and Thompson has aimed to quantify the level and rate of

progress in algorithms research. They compiled a list of the most commonly taught

algorithms across several computer science disciplines and researched the history of

each one. In order to better track the history of related algorithms, they grouped

together algorithms that all solve the same problem into algorithm families. Sherry

and Thompson’s results suggest that progress in algorithms has slowed; in the decades

following the 1970s, the number of algorithm families that have been seeing improve-

ments has been decreasing. The natural followup question is, of course—why?

This study explores one possible answer, which is that perhaps the field is ap-

proaching optimality. While algorithms have continued to grow better and faster

over the years, there comes a point where they reach the limit of what is possible

and where they cannot improve any further. This brings us to the concept of lower

bounds: A lower bound is a limit that even the best possible algorithm cannot im-

11

prove beyond. Could it be that many algorithm families have simply reached their

lower bounds, and can no longer be made any better? If so, the slowing progress

could simply be a side effect of a triumph in disguise.

Our results indicate that this could indeed be the case. More than three-quarters

of the analyzed algorithms are asymptotically optimal or close to it—in other words,

they are nearly the best and fastest they possibly can be, especially for large problem

sizes. It remains to be seen how this will continue to affect the future of algorithm

progress.

1.1 Upper and Lower Bounds

Typically, when we think about how “good” an algorithm is, we think about how fast

it is, that is, how much time (or how many steps) it takes to complete. One common

measure of speed is asymptotic time complexity, which is an upper bound on the

amount of time an algorithm will require as the input size grows. This is how we

usually quantify “improvement”; when a researcher invents an algorithm with smaller

asymptotic time complexity, we say that the algorithm has been improved.

But how much can we continue to improve? In order to answer this question, we

need to know some provable lower bound on the time complexity. A lower bound

for an algorithm family is a quantity that is provably less than or equal to the best

possible running time of any algorithm in that family. We cannot improve past the

lower bound, so if the upper bound and lower bound time complexities for a particular

problem are the same, then that problem has its optimal time complexity. If they are

not the same, then there is the potential for improvement; when a researcher proves

a larger lower bound, we say that the lower bound improves.

For example, in the case of sorting 𝑛 real numbers, one possible lower bound on

the number of steps is 𝑛, since every single number needs to be put in its place. Here,

and in all such problems, 𝑛 is the size of the input. We then say that sorting has

a lower bound on time complexity of Ω(𝑛). However, this is not the optimal lower

bound.

12

1940s and earlier 1950s 1970s 1980s 1990s 2000s 2010s1960s

1940s and earlier 1950s 1970s 1980s 1990s 2000s 2010s1960s

1940s and earlier 1950s 1970s 1980s 1990s 2000s 2010s1960s

N
um

be
r o

f f
am

ili
es

P
er

ce
nt

 o
f f

am
ili

es
P

er
ce

nt
 o

f f
am

ili
es

a) New algorithm families

b) Algorithm family upper bound improvements

c) Algorithm family lower bound improvements

Figure 1-1: Historical trends of algorithm progress. a Number of new algorithm
families discovered each decade. Share of known algorithm families whose b upper
bound or c lower bound improved each decade. Figures a and b reproduced with
permission from [48].

13

In order to prove a better lower bound, consider how much information is needed

to distinguish the correct order of the elements. We can construct a decision tree,

where each level asks a question that distinguishes two possibilities. There are 𝑛!

possibilities, which means there are 𝑛! leaves of the tree. Then the minimum height

of the tree is log(𝑛!), which (by Stirling’s approximation) is at least Ω(𝑛 log 𝑛).

Ω(𝑛 log 𝑛) is an improvement on Ω(𝑛), and it is actually the best, or optimal, lower

bound. One example of a sorting algorithm taking 𝑂(𝑛 log 𝑛) time is mergesort. In

mergesort, the set of elements to be sorted is repeatedly divided, sorted in smaller

chunks, and recombined (merged) together. Since mergesort takes 𝑂(𝑛 log 𝑛) time,

and the sorting lower bound is Ω(𝑛 log 𝑛), mergesort is an asymptotically optimal

algorithm for sorting.

1.2 History

By the 1960s, many algorithm families had already been created and work on improv-

ing them (in the traditional sense, through upper-bound work) was well underway

[48]. Figure 1-1 shows the trends of algorithm progress over time. As shown in Fig-

ure 1-1b, improvements in algorithm families peaked in the 1970s, with 33% of the

families that existed in that decade making gains. There has been a steady decrease

since then, and 7% of algorithm families improved in the 2010s.

Work on lower bounds, presented in Figure 1-1c, did not truly begin until around

the 1970s, during which there was a huge spike in lower bound improvements: 23%

of families saw lower bound improvements in the 1970s, compared to just 5% in the

previous decade. In the decades since, the pattern of lower bound improvements is

roughly comparable to the pattern of new algorithm families created, suggesting that

lower-bound work continues steadily.

14

Chapter 2

Results

Our work follows closely that of Sherry and Thompson, and we use the same idea of

families of algorithms that all solve the same computing problem. Here we also use

the terms algorithm family and problem nearly interchangeably.

In keeping with the conventions typically followed by algorithm designers, we

shall use Ω and 𝑂 notation for lower- and upper-bounds respectively, to express

running time as a function of input size. This type of notation ignores constant

factors and lower-order terms inherent in implementation, which allows us to focus

on how an algorithm scales up to large problem sizes and to more easily compare

different algorithms. For example, a lower bound of Ω(𝑛) means that every algorithm

must take time at least proportional to 𝑛, and an upper bound of 𝑂(𝑛) means that

there exists an algorithm that takes time at most proportional to 𝑛.

As an example, mergesort, described earlier, has an upper bound on running time

of 𝑂(𝑛 log 𝑛). This means that, at a large enough problem size, there is some constant

𝑐 for which the function 𝑐𝑛 log 𝑛 is always greater than the running time of mergesort.

Practically speaking, we can treat all algorithms within the same time complexity as

scaling similarly to each other, up to constant factors.

15

2.1 Examples

In order to get a better picture of what progress looks like, we can visualize how

upper and lower bounds for individual algorithm families converge over time. Figure

2-1 plots the evolution of a few different algorithm families.

2.1.1 Matrix Chain Multiplication

The first, Matrix Chain Multiplication, is the problem of finding the most efficient

way to multiply a given sequence of matrices. More specifically, we want to determine

the order of multiplications that requires the fewest arithmetic operations (performing

the actual matrix multiplications is a separate problem). This is useful in compilers

for code optimization, and in databases for query optimization.

Suppose we have matrices A which is 6 by 5 (6 rows by 5 columns), B which is 5

by 8, and C which is 8 by 4. We want to find the fastest way to compute the product

ABC. Since matrix multiplication is associative, the two options are to compute AB

then multiply by C, or BC first and multiply A by that intermediate product. In

other words, we could compute (AB)C or A(BC).

These two calculations require different numbers of computations. Computing

(AB)C requires 6 × 5 × 8 + 6 × 8 × 4 = 432 computations, while computing A(BC)

requires 5 × 8 × 4 + 6 × 5 × 4 = 280 computations. The second option requires fewer

arithmetic operations and therefore is the correct answer.

As illustrated in 2-1a, there were several improvements over the years. The brute

force method, which is simply to check all possibilities, takes exponential time. In

1953, Richard Bellman [12] invented dynamic programming, a powerful technique

of dividing a large problem into smaller intermediate problems to optimize; in 1973

Godbole [22] showed how to use this technique to get an 𝑂(𝑛3) algorithm. In 1981, Hu

and Shing [27] used a more complicated technique involving triangulations of regular

polygons to obtain an 𝑂(𝑛 log 𝑛)-time algorithm.

On the lower bound side, Ramanan [39] in 1991 proved an Ω(𝑛 log 𝑛) lower bound

for the Matrix Chain Multiplication problem by first proving a lower bound for poly-

16

a) Matrix chain multiplication progress

b) Sequence alignment progress

Brute Force

S. S. Godbole DP, 1953

T. C. Hu & M. T. Shing, 1982

Trivial
P. Ramanan, 1991 Bradford & Choppella & Rawlins, 1995

constant

logn

linear

nlogn

quadratic

cubic

exponential

poly > cubic

BEST KNOWN ALGORITHM | O(.)

THEORETICAL LOWER BOUND | Ω(.)

OPTIMAL ALGORITHM ACHIEVED
(Algorithm Gains Exhausted)

Needleman & Wunsch, 1970

Masek & Paterson, 1980

Trivial Lower Bound

Reingold, 1972
Hirschberg, 1978

BEST KNOWN ALGORITHM | O(.)

THEORETICAL LOWER BOUND | Ω(.)

Backurs & Indyk, 2015
Bringmann, et al., 2015

Vintsyuk, 1968

constant

quadratic

exponential

poly > cubic

Brute Force

OPTIMAL ALGORITHM ACHIEVED
(Algorithm Gains Exhausted)

logn

linear

nlogn

cubic

Figure 2-1: The upper and lower bounds of algorithm families over time. a Matrix
chain multiplication. b Sequence alignment. A subsequent marker at the same com-
plexity but at a later date indicates either that an independent discovery of the same
bound was made, or that an improvement was made but it was not large enough to
jump between the labeled categories.

17

gon triangulation and then relating that lower bound to Matrix Chain Multiplication.

Shortly after that, in 1995, Bradford et al. [14] gave a different, more direct proof of

the same lower bound, by proving that a class of solutions to Matrix Chain Multipli-

cation requires a large input size. Both of these bounds match the best upper bound,

which means that the Matrix Chain Multiplication problem is now at an optimal

time complexity of 𝑂(𝑛 log 𝑛). This is shown in Figure 2-1a as the convergence of

the upper and lower bound lines. Because this algorithm family’s upper and lower

bounds have converged, there are no longer any asymptotic improvements possible

for Matrix Chain Multiplication.

2.1.2 Sequence Alignment

We can follow a similar storyline for Sequence Alignment (also known as Edit Dis-

tance). The problem here essentially is to find the number of single-character edits re-

quired to transform one string (or sequence) into another. For example, transforming

HUMPTY to DUMPTY simply requires replacing the H with D, or one edit. Transforming

PREDICTION to PREDILECTION requires two insertions. The name Sequence Alignment

is due to its application in bioinformatics, in which researchers assess different DNA

sequences to search for similarities between subsequences.

While an 𝑂(𝑛2)-time algorithm for Edit Distance due to Vintsyuk [53] was known

as early as 1968, it was not until 2015 that this was shown to be the optimal algorithm

when two independent teams proved the matching lower bound. Also noteworthy,

though not explicitly noted in this diagram, is that the Ω(𝑛2) lower bound here is

dependent on a conjecture, the Strong Exponential Time Hypothesis (SETH). This

conjecture is largely believed to be true by the computer science community [52] and

thus we treat it that way. 1

1See the Discussion and Methods sections for more details on how we treat these types of condi-
tional lower bounds.

18

2.2 Summary of Results

2.2.1 Overall Optimality

In total, we analyzed 113 distinct algorithm families. In keeping with [48], we only

studied worst-case complexities of exact algorithm families.2 We repeated the data

collection process behind Figure 2-1 for each of these algorithm families: we recorded

lower bounds for each of the algorithm families from [48], and compared them to the

corresponding upper bounds.

In order to measure the progress gap between upper and lower bounds, we mea-

sured the gap between the best upper and lower bounds for each family. Specifically,

we computed the quotient between the best asymptotic upper and lower bounds and

then classified the algorithm families into five categories:

• Optimal. Problems in this category have a constant difference between their

upper and lower bounds, and we say that they have matching upper and lower

bound. Asymptotically optimal algorithms exist for these problems.

• Sublinear difference: (1, 𝑛). This category includes anything asymptotically

sublinear, which includes problems with a polylogarithmic difference. The term

“polylogarithmic” refers to something which is polynomial in log 𝑛. For instance,

log3(𝑛) is polylogarithmic.

• Linear difference: [𝑛, 𝑛 log𝑘 𝑛]. The “linear” category accepts anything within

a polylogarithmic factor above linear, such as 𝑂(𝑛 log 𝑛) or 𝑂(𝑛 log2 𝑛).

• Polynomial difference: (𝑛 log𝑘 𝑛, 𝑛𝑘]. Here we only consider polynomials

with an exponent greater than 1, such as 𝑂(𝑛1.5) or 𝑂(𝑛3).

• Exponential difference: (𝑛𝑘, ∞). This category includes problems where the

upper bound is superpolynomial or greater (which includes exponential), and

the lower bound is polynomial or less.

2See Methods for more on the criteria to be an included algorithm family.

19

To demonstrate the contrast between these categories, consider two fictional prob-

lems, A and B. If problem A has an upper bound of 𝑂(𝑛4) and a lower bound of Ω(𝑛2),

then it would have a gap of 𝑂(𝑛2), which would be classified as polynomial. On the

other hand, problem B with an upper bound of 𝑂(𝑛 log 𝑛) and a lower bound of Ω(𝑛)

would have a gap of 𝑂(log 𝑛), which would be classified as having a sublinear dif-

ference. For some perspective on how these values scale, consider a problem size of

𝑛 = 100. The quantity 𝑛2 at 𝑛 = 100 is 10000, while the quantity log 𝑛 at the same

value of 𝑛 is 6.6 (assuming base-2)—a 1500× multiplicative difference.

Figure 2-2a presents the resulting data from grouping the problems this way. 64%

of the analyzed problems are already at optimal, and a further 15% have only a

sublinear or polylogarithmic multiplicative potential improvement.

In other words, more than three-quarters of the algorithm families in our dataset

are very nearly at optimal, with no further improvement possible of a polynomial or

greater size.

2.2.2 Remaining Opportunities for Algorithmic Improvement

The rest of Figure 2-2 quantifies the remaining opportunities for improvement. Figure

2-2b illustrates where there is still possibility for exponential improvement, while 2-2c

provides a more “zoomed-in” view of problems with polynomial running times.

The leftmost column of squares in 2-2b contains all the algorithm families with an

exponential upper bound. The topmost square in that column displays the number

of families with a matching exponential lower bound, and the squares below list the

number of families with differently categorized lower bounds. These categories were

chosen so that different categories represent exponentially different time complexities.

In total, out of the 113 problems analyzed, only 4 have upper and lower bounds in

different categories. The other vast majority, 109 algorithm families, cannot jump

between upper or lower bound categories and therefore have no further exponential

improvements possible.

However, the majority of these are contained in the rather large category of hav-

ing both a polynomial upper bound and a polynomial lower bound. For example,

20

a) Gaps between upper and lower bounds

22

82

500

4

Exponential

or Linear

Sublinear

Exponential or Linear Sublinear

0
> n³

0

0

102

00

0

1

12

6

0

11 8 32

n³ n² n log n n

> n³

n³

n²

n log n

n

b) Bound categorizations c) Polynomial bound categorizations

Upper boundsLower bounds Upper boundsLower bounds

Polynomial

Polynomial

Figure 2-2: a Gaps between upper and lower bounds, grouped into five categories.
For the purposes of this graph, “linear” includes polynomials within a polylogarithmic
factor above 𝑂(𝑛), while “polynomial” is restricted to polynomials with degree strictly
greater than 1; “exponential” includes anything superpolynomial or greater; and we
count NP-hard and NP-complete problems as having a “tight” bound. b Breakdown
of upper and lower bounds into three categories for each: exponential, polynomial or
linear, and sublinear. c Breakdown of upper and lower bounds within the polynomial
category into five further divisions for each.

21

𝑂(𝑛 log 𝑛) and 𝑂(𝑛4) are both polynomial but have substantially different growth

rates. Therefore, we present a more granular division of these 82 problems in Figure

2-2c. We can again see that most problems here have matching upper and lower

bounds. 50 out of these 82 problems are optimal: 6 problems with a complexity of

𝑂(𝑛2), 12 at 𝑂(𝑛 log 𝑛), and 32 at 𝑂(𝑛).

22

Chapter 3

Discussion

3.1 The Decline of Algorithm Progress

Our results suggest that many algorithms are already optimal, and no more progress

is possible on the exact versions of these problems. This might explain why upper-

bound progress in exact algorithms has seemed to be slowing in recent decades.

Figure 1-1b, reproduced here with permission from [48], displays the percentage of

algorithms whose upper bounds improve each decade, in which there is a clear drop-

off in the decades following the 1970s. Sherry and Thompson raise as one potential

explanation that some algorithms are already optimal, leaving little room for further

improvement. Our data lend support to this hypothesis.

Of course, there are many factors that were completely outside of the scope of this

survey, which only considered exact algorithms in textbooks. For one, algorithms that

have made it into published textbooks are likely to be very well-studied and therefore

have more complete work done already. Also, this is a relatively small scope compared

to the gigantic field of computer science, and there is certainly progress possible in

fields like approximate, parallel, and quantum algorithms (just to name a few), which

are explicitly not included in this dataset.

23

1940s and earlier 1950s 1970s 1980s 1990s 2000s 2010s1960s

Optimal Sublinear Linear Polynomial Exponential

P ≠ NP

SETH

none

a) Conjectures needed for lower bound proofs

b) Conjectures needed, by remaining optimality gap

c) Conjectures needed, by decade

P
er

ce
nt

 o
f f

am
ili

es
P

er
ce

nt
 o

f f
am

ili
es

Figure 3-1: Use of conjectures in proving lower bounds. a Share of lower bounds re-
quiring conjectures for their proof. b Gaps between upper and lower bounds, grouped
as in Figure 2-2, showing the share of lower bounds that require conjectures. c Per-
cent of algorithm families with lower bound improvements requiring each conjecture,
by decade.

24

3.2 The Evolution of Lower-Bound Techniques

Many algorithm families have been optimal for the past few decades, but researchers

just did not have the techniques to prove the matching lower bounds. One such

technique is the use of conjectures, or unproven assumptions that are nevertheless

widely believed to be true [52]. Some of the lower bound proofs found in this survey

paper require conjectures, either P ̸= NP or SETH, the Strong Exponential Time

Hypothesis. We call such lower bounds conditional lower bounds, since they are

conditional on a conjecture.

Our data suggest that 15% of lower bounds are conditional. These conjectures

can be very powerful; as shown in Figure 3-1b, in the algorithm families analyzed,

the presence of a conjecture means the algorithm family is either optimal or near-

optimal. Figure 3-1c also shows how work on conditional lower bounds has been

increasing over the decades, compared to regular unconditional lower bounds. Lower

bounds involving SETH did not even appear until the 2010s, and all of the lower

bounds proven after the 2000s were conditional. This suggests that these conjectures

are becoming a more powerful tool for proving lower bounds.

25

26

Chapter 4

Methods

4.1 Overview

We began with going through a set of exact algorithm families, formulated by [48]

through careful examination of important algorithms textbooks. In our data gather-

ing phase, we compiled a list of lower bounds for these algorithm families. Specifically,

for each algorithm family, we searched for proven lower bounds in the literature and

then recorded the lower bound itself, the notation for the lower bound, the paper

proving it, and the year of publication.

We also recorded some additional information about the lower bound. Some

lower bounds are inherent in the problem statement itself—for example, the amount

of time it takes to fully read in an input—and these bounds we refer to as “trivial.”

We also noted whether it is applicable only to a restricted version of the problem,

such as a special case or a restricted computation model; such lower bounds are

interesting to consider but may not be applicable in overall comparisons to upper

bounds. Finally, we also needed to consider whether the bound is conditional on some

unproven conjecture, and if so we recorded that conjecture. The two conjectures that

we ended up including are P ̸= NP and the Strong Exponential Time Hypothesis

(SETH).

To give some background, the terms P and NP are computational complexity

classes, meaning that they refer to sets of problems with certain computational char-

27

acteristics. The class P contains every problem that can be solved in polynomial time,

while the class NP contains every problem whose solution can be verified, or checked,

in polynomial time. The P versus NP problem asks whether every problem that can

be solved “quickly”—in polynomial time—can also be checked “quickly.” A problem

being NP-hard means that it is at least as hard as every problem in NP. In terms

of lower bounds, a problem being NP-hard means that there is an exponential lower

bound if and only if P ̸= NP. The Strong Exponential Time Hypothesis (SETH) is

a stronger statement than P ̸= NP. Either of these conjectures, if true, would have

strong implications for the existing structure of complexity classes.

In general, we started by reading through the papers in [48] that prove upper

bounds to get some background and understanding on the problem. We then per-

formed searches in Google Scholar for relevant papers in the field for lower bounds

to the problem. This began with a search (and read-through) among the papers that

cite a seminal upper bounds paper, and then looking through papers that cite, or are

cited by, any promising looking papers. We repeated this process until we got a good

sense of the lower bounds that exist and felt confident that we had found the papers

that prove the relevant lower bounds (and lower bound improvements), if any exist.

It is notable that in some cases the only lower bound reported is the trivial lower

bound, either because the upper bound matches or almost matches the lower bound,

or because there simply is not very much work done on the lower bound.

4.2 Algorithm Family Refinements

There are some problems that are so hard that the primary approaches to these

problems are approximations. While approximation algorithms is a rich subfield in

algorithms, they are outside of the scope of this paper, which focuses on the progress

in exact algorithms. We do not yet have a framework to compare bounds for exact

and approximate algorithms. However, we did not want to exclude problems that

were clearly important, by the judgement of textbook authors and paper authors and

by our own experiences. After some discussion we decided to include problems that

28

have at least an exact brute-force solution. This excluded problems such as Integral

Equations, which did not have any general-purpose exact algorithm.

In a few cases, multiple algorithms solving distinct versions of a problem were

grouped together as the same algorithm family. We made sure to clarify potentially

ambiguous problem statements and to separate out problems that belonged in sepa-

rate families.

For consistency, we parameterize by problem (input) size in all cases. This does

go against convention for some problems, namely matrix-related algorithms, where

conventionally 𝑛 is the side length of the matrix; by our terminology this is actually

the square root of the problem size. This also occurs for some graph problems, or

other problems where a matrix representation is used.

4.3 Analysis

In the process of gathering our data, there were some bounds that did not fit neatly

into our broad categorizations. These ended up being algorithms that were quasipoly-

nomial, which is exp(log𝑐 𝑛) for some constant 𝑐 > 1. They fall in an odd gap be-

tween categories, slower than any polynomial-time algorithm, but not as slow as any

exponential-time algorithm. We ended up categorizing these all as “exponential” for

the purpose of our analysis.

29

30

Appendix A

Lower Bound Data

Below is a list of all the algorithm families included in this study and the lower bounds

found for them. See [48] for more details on the families.

As noted in the Methods, 𝑛 represents the problem size. Problems marked with

an asterisk (*) in the Notes are ones where the problem parameter is conventionally

something different. For example, for matrix problems, 𝑛 is more conventionally the

side length of the matrix, while the problem size is actually 𝑛2. Since we report in

terms of problem size, we say that the lower bound of Matrix Multiplication is linear

in the problem size, not quadratic. Citations in the Notes are additional sources that

are interesting and relevant but are not necessarily lower-bound papers.

Algorithm Family Lower Bound(s) Year Source Notes

Sorting Ω(𝑛 log 𝑛) 1721 1

Integer Sorting Ω(𝑛) – trivial

Matrix Chain Multiplication Ω(𝑛 log 𝑛) 1994 [39]

Ω(𝑛 log 𝑛) 1995 [14]

Longest Common Subsequence Ω(𝑛) – trivial

Maximum Flow Ω(𝑛2) 2015 [1] SETH

Matrix Multiplication Ω(𝑛) – trivial [6], *

3-Graph Coloring exponential 1973 [32] NP-hard

4-Graph Coloring exponential 1973 [32] NP-hard

1Stirling’s approximation

31

Algorithm Family Lower Bound(s) Year Source Notes

Linear System of Equations Ω(𝑛) – trivial *

Linear Programming Ω(𝑛) – trivial *

Line Segment Intersection Ω(𝑛 log 𝑛) 1997 [10]

Convex Hull Ω(𝑛 log 𝑛) 1975 [46] [55]

Strongly Connected Compo-

nents

Ω(𝑛) 1972 [50]

Minimum Spanning Tree Ω(𝑛) – trivial [23], [24]

Closest Pair Problem Ω(𝑛 log 𝑛) 1975 [46]

All-pairs Shortest Path Ω(𝑛2 log 𝑛) 1977 [54]

First Category Integer Factoring Ω(𝑛) – trivial

Second Category Integer Factor-

ing

Ω(𝑛) – trivial [9]

LU Decomposition Ω(𝑛) – trivial *

Informed Search 𝑏𝑑/2 – trivial

String Search 3𝑛(1− 𝑜(1)) 1994 [17]

Sequence Alignment Ω(𝑛 log 𝑛) 1972 [41]

Ω(𝑛 log 𝑛) 1978 [26]

Ω(𝑛2) 2015 [15] SETH

Ω(𝑛2) 2015 [7] SETH

Joins Ω(𝑛+𝑚) – trivial

Line Clipping Ω(1) – trivial

NFA to DFA Conversion Ω(2𝑛/2) 1996 [43]

Multiplication Ω(𝑛) – trivial

Ω(𝑛 log 𝑛) 1969 [18] online

Maximum Cardinality Matching Ω(𝑛) – trivial

Key Exchange Ω(𝑛) – trivial [13], [8], [49]

Mutual Exclusion Ω(1) – trivial [34], [40]

SDD Systems Solvers Ω(𝑛) – trivial

Cycle Detection Ω(𝑛) 1982 [45] [16]

Generating Random Permuta-

tions

Ω(𝑛) – trivial

32

Algorithm Family Lower Bound(s) Year Source Notes

Gröbner Bases Ω(𝑛) – trivial

Minimum value2 Ω(𝑛) – [3]

All Permutations Ω(𝑛) – trivial

Huffman Encoding Ω(𝑛) – trivial

Nash Equilibria Ω(𝑛) – trivial

Maximum-weight Matching Ω(𝑛) – trivial

Constructing Eulerian Trails in

a Graph

Ω(𝑛) – trivial

Line Drawing Ω(𝑛) – trivial

Polygon Clipping Ω(𝑛 log 𝑛) 1976 [47]

Nearest Neighbor Search Ω(𝑛 log 𝑛) 1975 [46]

Coset Enumeration long 1955 [38]

Register Allocation Ω(𝑛) – trivial

Voronoi Diagrams Ω(𝑛 log 𝑛) 1975 [46]

Topological Sorting Ω(𝑛) – trivial

DFA Minimization Ω(𝑛) – trivial

Lowest Common Ancestor Ω(𝑛) – trivial [25]

Graph Edit Distance Computa-

tion

exponential 1994 [31] NP-hard, [56]

Enumerating Maximal Cliques exponential 1980 [30] NP-hard

The Traveling-Salesman Prob-

lem

exponential 1972 [28] NP-hard

2-D Elliptic Partial Ω(𝑛2) 1972 [44]

3-D Elliptic Partial Ω(𝑛2) 1972 [44]

Delaunay Triangulation Ω(𝑛 log 𝑛) 1975 [46]

De Novo Gene Assembly Ω(𝑛) – trivial

Subset-Sum exponential 1972 [28] NP-hard

Dependency Inference exponential 1992 [35]

BCNF Decomposition exponential 1979 [11] NP-hard, [51]

4NF Decomposition exponential 1979 [11] NP-hard

2Minimum value in each row of an implicitly-defined totally monotone matrix

33

Algorithm Family Lower Bound(s) Year Source Notes

Discovering Multivalued Depen-

dencies

exponential 1992 [35]

Disk Scheduling Ω(𝑛) – trivial

Vertex-Cover exponential 1972 [28] NP-complete

Parsing Ω(𝑛) – trivial [19]

Finding Frequent Item Sets exponential 1992 [29] P#-complete

Lossy Compression Ω(𝑛) – trivial

Factorization of Polynomials

over Finite Fields

Ω(𝑛) – trivial

Cryptanalysis of Linear Feed-

back Shift Registers

Ω(𝑛) – trivial

Stable Marriage Ω(𝑛) – trivial *

Longest Path on Interval

Graphs

Ω(𝑛) – trivial

Maximum Subarray Ω(𝑛) – trivial

Constructing Suffix Trees Ω(𝑛) – trivial

Entity Resolution Ω(𝑛) – trivial

Longest Palindromic Substring Ω(𝑛) – trivial

Translating Abstract Syntax

Trees into Code

Ω(𝑛) – trivial

Graph Isomorphism Problem Ω(𝑛) – trivial

Digraph Realization Ω(𝑛) – trivial

Duplicate Elimination Ω(𝑛) – trivial

Matrix Factorization for Collab-

orative Filtering

Ω(𝑛) – trivial *

MDPs for Optimal Policies Ω(𝑛) – trivial

Set-Covering exponential 1972 [28] NP-complete

Motif Search exponential 2000 [5] NP-hard

Link Analysis (Indegree) Ω(𝑛) – trivial

Link Analysis (Pagerank) Ω(𝑛) – trivial

Cyclopeptide Sequencing Ω(𝑛) – trivial

34

Algorithm Family Lower Bound(s) Year Source Notes

Point in Polygon Ω(𝑛) – trivial

Maximum Cut exponential 1972 [28] NP-complete

Minimum Wiener Connector exponential 2015 [42] NP-hard

Determinant using Integer

Arithmetic

Ω(𝑛) – trivial *

Integer Relation Ω(𝑛) – trivial

Sequence to Graph Alignment

(Linear Gap Penalty)

Ω(𝑛) – trivial

Logarithm Calculations Ω(𝑛) – trivial

Rod Cutting Ω(𝑛) – trivial

Transitive Reduction Ω(𝑛2) 1972 [4]

Change-Making Ω(2𝑛) 1975 [33] NP-complete

Turnpike Problem Ω(𝑛) – trivial

n-Queens Problem Ω(2𝑛) 2017 [21] NP-hard

Median String exponential 2005 [37] NP-complete

Frequent Words Ω(𝑛) – trivial

Secret Sharing Ω(𝑡𝑛) – trivial

Polynomial Interpolation Ω(𝑛) – trivial *

Greatest Common Divisor Ω(𝑛) – trivial [36]

Weighted Activity Selection Ω(𝑛 log 𝑛) 1976 [47]

Ω(𝑛 log 𝑛) 1978 [20]

Single-interval Scheduling Max-

imization (Unweighted)

Ω(𝑛) – trivial

Self-Balancing Trees Creation Ω(𝑛 log 𝑛) 1972 [2]

Self-Balancing Trees Insertion Ω(log 𝑛) 1972 [2]

Self-Balancing Trees Deletion Ω(log 𝑛) 1972 [2]

Self-Balancing Trees Search Ω(log 𝑛) 1972 [2]

Deadlock Avoidance Ω(𝑛) – trivial

Page Replacements Ω(𝑛) – trivial

Recovery Ω(𝑛) – trivial

35

36

Bibliography

[1] Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. Matching tri-
angles and basing hardness on an extremely popular conjecture. SIAM Journal
on Computing, 47(3):1098–1122, 2018.

[2] George M Adel’son-Vel’skii and Evgenii Mikhailovich Landis. An algorithm for
organization of information. In Doklady Akademii Nauk, volume 146, pages 263–
266. Russian Academy of Sciences, 1962.

[3] Alok Aggarwal, Maria M Klawe, Shlomo Moran, Peter Shor, and Robert Wilber.
Geometric applications of a matrix-searching algorithm. Algorithmica, 2(1):195–
208, 1987.

[4] Alfred V. Aho, Michael R Garey, and Jeffrey D. Ullman. The transitive reduction
of a directed graph. SIAM Journal on Computing, 1(2):131–137, 1972.

[5] Tatsuya Akutsu, Hiroki Arimura, and Shinichi Shimozono. On approximation
algorithms for local multiple alignment. In Proceedings of the fourth annual
international conference on Computational molecular biology, pages 1–7, 2000.

[6] Josh Alman and Virginia Vassilevska Williams. Limits on all known (and some
unknown) approaches to matrix multiplication. In 2018 IEEE 59th Annual Sym-
posium on Foundations of Computer Science (FOCS), pages 580–591. IEEE,
2018.

[7] Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly
subquadratic time (unless seth is false). In Proceedings of the forty-seventh annual
ACM symposium on Theory of computing, pages 51–58, 2015.

[8] Boaz Barak and Mohammad Mahmoody-Ghidary. Merkle puzzles are opti-
mal—an o (n 2)-query attack on any key exchange from a random oracle. In
Annual International Cryptology Conference, pages 374–390. Springer, 2009.

[9] Connelly Barnes. Integer factorization algorithms. Department of Physics Oregon
State University, 2004.

[10] Julien Basch, Leonidas J Guibas, and GD Ramkumar. Sweeping lines and line
segments with a heap. In Proceedings of the thirteenth annual symposium on
Computational geometry, pages 469–471, 1997.

37

[11] Catriel Beeri and Philip A Bernstein. Computational problems related to the de-
sign of normal form relational schemas. ACM Transactions on Database Systems
(TODS), 4(1):30–59, 1979.

[12] Richard Bellman. The theory of dynamic programming. Bulletin of the American
Mathematical Society, 60(6):503–515, 1954.

[13] Carlo Blundo, Alfredo De Santis, Amir Herzberg, Shay Kutten, Ugo Vaccaro,
and Moti Yung. Perfectly-secure key distribution for dynamic conferences. In
Annual international cryptology conference, pages 471–486. Springer, 1992.

[14] Phillip G Bradford, Venkatesh Choppella, and Gregory JE Rawlins. Lower
bounds for the matrix chain ordering problem. In Latin American Symposium
on Theoretical Informatics, pages 112–130. Springer, 1995.

[15] Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds
for string problems and dynamic time warping. In 2015 IEEE 56th Annual
Symposium on Foundations of Computer Science, pages 79–97. IEEE, 2015.

[16] Sourav Chakraborty, David García-Soriano, and Arie Matsliah. Cycle detection,
order finding and discrete log with jumps. In ICS, pages 284–297. Citeseer, 2011.

[17] Richard Cole. Tight bounds on the complexity of the boyer–moore string match-
ing algorithm. SIAM Journal on Computing, 23(5):1075–1091, 1994.

[18] Stephen A Cook and Stål O Aanderaa. On the minimum computation time
of functions. Transactions of the American Mathematical Society, 142:291–314,
1969.

[19] Jay Earley. An efficient context-free parsing algorithm. Communications of the
ACM, 13(2):94–102, 1970.

[20] Michael L Fredman and Bruce Weide. On the complexity of computing the
measure of ∪[ai, bi]. Communications of the ACM, 21(7):540–544, 1978.

[21] Ian P Gent, Christopher Jefferson, and Peter Nightingale. Complexity of n-
queens completion. Journal of Artificial Intelligence Research, 59:815–848, 2017.

[22] Sadashiva S Godbole. On efficient computation of matrix chain products. IEEE
Transactions on Computers, 100(9):864–866, 1973.

[23] Ronald L Graham and Pavol Hell. On the history of the minimum spanning tree
problem. Annals of the History of Computing, 7(1):43–57, 1985.

[24] Mohamed Haouari and Jouhaina Siala Chaouachi. Upper and lower bounding
strategies for the generalized minimum spanning tree problem. European Journal
of Operational Research, 171(2):632–647, 2006.

[25] Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common
ancestors. siam Journal on Computing, 13(2):338–355, 1984.

38

[26] Daniel S. Hirschberg. An information theoretic lower bound for the longest
common subsequence problem. Rice University ECE Technical Report, (7705),
1977.

[27] TC Hu and MT Shing. Computation of matrix chain products. part ii. SIAM
Journal on Computing, 13(2):228–251, 1984.

[28] Richard M Karp. Reducibility among combinatorial problems. In Complexity of
computer computations, pages 85–103. Springer, 1972.

[29] Toshinobu Kashiwabara, Sumio Masuda, Kazuo Nakajima, and Toshio Fujisawa.
Generation of maximum independent sets of a bipartite graph and maximum
cliques of a circular-arc graph. Journal of algorithms, 13(1):161–174, 1992.

[30] Eugene L. Lawler, Jan Karel Lenstra, and AHG Rinnooy Kan. Generating all
maximal independent sets: Np-hardness and polynomial-time algorithms. SIAM
Journal on Computing, 9(3):558–565, 1980.

[31] Chih-Long Lin. Hardness of approximating graph transformation problem. In In-
ternational Symposium on Algorithms and Computation, pages 74–82. Springer,
1994.

[32] László Lovász. Coverings and colorings of hypergraphs. In Proc. 4th Southeast-
ern Conference of Combinatorics, Graph Theory, and Computing, pages 3–12.
Utilitas Mathematica Publishing, 1973.

[33] George S Lueker. Two NP-complete problems in nonnegative integer program-
ming. Princeton University. Department of Electrical Engineering, 1975.

[34] Mamoru Maekawa. A
√
𝑁 algorithm for mutual exclusion in decentralized sys-

tems. ACM Transactions on Computer Systems (TOCS), 3(2):145–159, 1985.

[35] Heikki Mannila and Kari-Jouko Räihä. On the complexity of inferring functional
dependencies. Discrete Applied Mathematics, 40(2):237–243, 1992.

[36] Yishay Mansour, Baruch Schieber, and Prasoon Tiwari. A lower bound for
integer greatest common divisor computations. Journal of the ACM (JACM),
38(2):453–471, 1991.

[37] François Nicolas and Eric Rivals. Hardness results for the center and median
string problems under the weighted and unweighted edit distances. Journal of
discrete algorithms, 3(2-4):390–415, 2005.

[38] Petr Sergeevich Novikov. Algorithmic unsolvability of the word problem in group
theory. Journal of Symbolic Logic, 23(1), 1958.

[39] Prakash Ramanan. A new lower bound technique and its application: Tight
lower bound for a polygon triangulation problem. SIAM Journal on Computing,
23(4):834–851, 1994.

39

[40] Kerry Raymond. A tree-based algorithm for distributed mutual exclusion. ACM
Transactions on Computer Systems (TOCS), 7(1):61–77, 1989.

[41] Edward M Reingold. On the optimality of some set algorithms. Journal of the
ACM (JACM), 19(4):649–659, 1972.

[42] Natali Ruchansky, Francesco Bonchi, David García-Soriano, Francesco Gullo,
and Nicolas Kourtellis. The minimum wiener connector problem. In Proceedings
of the 2015 ACM SIGMOD International Conference on Management of Data,
pages 1587–1602, 2015.

[43] Kai Salomaa and Sheng Yu. Nfa to dfa transformation for finite languages. In
International Workshop on Implementing Automata, pages 149–158. Springer,
1996.

[44] Martin H Schultz. The computational complexity of elliptic partial differential
equations. In Complexity of Computer Computations, pages 73–83. Springer,
1972.

[45] Robert Sedgewick, Thomas G Szymanski, and Andrew C Yao. The complexity of
finding cycles in periodic functions. SIAM Journal on Computing, 11(2):376–390,
1982.

[46] Michael Ian Shamos and Dan Hoey. Closest-point problems. In 16th Annual
Symposium on Foundations of Computer Science (sfcs 1975), pages 151–162.
IEEE, 1975.

[47] Michael Ian Shamos and Dan Hoey. Geometric intersection problems. In 17th
Annual Symposium on Foundations of Computer Science (sfcs 1976), pages 208–
215. IEEE, 1976.

[48] Yash Sherry and Neil Thompson. How fast do algorithms improve. Technical
report, Mimeo, 2020.

[49] SeongHan Shin, Kazukuni Kobara, and Hideki Imai. A lower-bound of complex-
ity for rsa-based password-authenticated key exchange. In European Public Key
Infrastructure Workshop, pages 191–205. Springer, 2005.

[50] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM journal
on computing, 1(2):146–160, 1972.

[51] Don-Min Tsou and Patrick C Fischer. Decomposition of a relation scheme into
boyce-codd normal form. ACM SIGACT News, 14(3):23–29, 1982.

[52] Virginia Vassilevska Williams. Hardness of easy problems: Basing hardness
on popular conjectures such as the strong exponential time hypothesis (invited
talk). In 10th International Symposium on Parameterized and Exact Computa-
tion (IPEC 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

40

[53] Taras K Vintsyuk. Speech discrimination by dynamic programming. Cybernetics,
4(1):52–57, 1968.

[54] Andrew C Yao, David M Avis, and Ronald L Rivest. An 𝜔 (n2 log n) lower
bound to the shortest paths problem. In Proceedings of the ninth annual ACM
symposium on Theory of computing, pages 11–17, 1977.

[55] Andrew Chi-Chih Yao. A lower bound to finding convex hulls. Journal of the
ACM (JACM), 28(4):780–787, 1981.

[56] Zhiping Zeng, Anthony KH Tung, Jianyong Wang, Jianhua Feng, and Lizhu
Zhou. Comparing stars: On approximating graph edit distance. Proceedings of
the VLDB Endowment, 2(1):25–36, 2009.

41

	Introduction
	Upper and Lower Bounds
	History

	Results
	Examples
	Matrix Chain Multiplication
	Sequence Alignment

	Summary of Results
	Overall Optimality
	Remaining Opportunities for Algorithmic Improvement

	Discussion
	The Decline of Algorithm Progress
	The Evolution of Lower-Bound Techniques

	Methods
	Overview
	Algorithm Family Refinements
	Analysis

	Lower Bound Data

