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ABSTRACT 

 The pharmaceutical industry relies on cold chain supply infrastructure to preserve the integrity of 
temperature-sensitive products. Specifically, passive controlled temperature solutions present an 
increased challenge as the inherent uncertainty of ambient temperatures and process lead time variations 
in the delivery dramatically increase the risk of inactivating the product. Despite the sponsor company's 
efforts to test their package solutions in laboratory temperature-control chambers, a lack of visibility 
exists on the likelihood of success of the packaging solution in real-life conditions. Hence, developing 
predictive forecasting capabilities for their deliveries across the United States can provide significant 
financial and operational benefits. This research studies and compares two families of methods of 
predicting temperature ranges of the goods: statistical methods, Autoregression and ARIMA, and 
machine learning methods, K-Nearest Neighbor, Support Vector Machines, Random Forest, Quantile 
Regression, and Long Short-Term Memory Neural Networks. Additionally, one-step and multi-step 
ahead forecasting techniques were analyzed in all models to determine the best forecasting approach. In 
addition, the forecasting models were tested on two types of packaging solutions, one for the summer 
profiles and the second for the winter profile. The results confirm that one-step ahead models outperform 
multi-step ahead forecasting for long-term horizons when compared by RMSE and MAE. Both statistical 
and machine learning models accurately predicted training and test set values with relatively lower 
RMSE. Nonetheless, it was found that testing the models in new external temperature conditions 
presented contradictory results for predicting the internal temperature, mainly due to the limited data set 
utilized to train and validate the models. Quantile Regression, on the other hand, successfully predicted 
the internal temperature of the payload’s given new ambient conditions. Therefore, we concluded that a 
forecasting model can be implemented as part of a predictive risk assessment analysis, considering the 
impact of variability in both temperature and process lead times for the sponsor company’s passive-
controlled temperature solutions. These models can be extended for future applications with different 
configurations of insulator materials, amount of gel packs, and package dimensions.  
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1. INTRODUCTION 

The pharmaceutical industry makes up a considerable part of the global economy (Grand 

View Research, 2021) and has experienced significant growth during the past two decades. 

Pharma revenues worldwide totaled US $1.27 trillion in 2020 (Mikulic, 2021), contributing 

1.5% of the global GDP of US $84.54 trillion (O'Neill, 2021).  

The pharmaceutical industry relies on cold chain supply infrastructure; these networks are 

vital to preserve the integrity of temperature-sensitive products. In terms of value, cold chain-

reliant logistics accounted for more than 27% of pharmaceutical logistics cost in 2020 (Grand 

View Research, 2021).  

As many raw materials, active pharmaceutical ingredients, and finished products require 

the use of cold chain logistics, temperature control throughout the supply chain is crucial to 

maintain their efficacy. In addition to the pharmaceutical industry’s specific supply chain 

needs, the industry has also experienced considerable growth within its temperature-sensitive 

portfolio. The share of temperature-sensitive goods overall is only likely to increase as new 

and more complex therapies are being developed, e.g., treatments derived from living cells that 

are very sensitive to changes in temperature. The growth is also driven by the increased need 

for COVID vaccines. Moreover, pharmaceutical logistics and their cold chain operations are 

some of the most heavily regulated supply chain specialties (Singh, 2005) as safety is a big 

concern for governments and oversight bodies. 

The sponsor company for this project is a multinational pharmaceutical company with a 

large presence throughout the United States and more broadly, the world. The sponsor 
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company has a large catalog of temperature-sensitive products which constitute a large part of 

their business, giving this research particular importance. 

Due to the large operational area of the United States, and as the sponsor company delivers 

supplies through numerous lanes throughout the United States, temperature variations between 

geographical locations must be considered, in addition to weather conditions during transit. In 

addition, the shipping lanes have distinct stages in the supply chain, where changes in the 

environmental conditions directly impact the delivered package's inner temperature and its 

performance. 

Currently, the company aims to find the best utilization of financial resources in its supply 

chains, as they rely on third-party shippers to transport their cold chain goods. The company 

is considering changing delivery schedules and shipping solutions. As of now, the cold chain 

delivery success rate, which is the percentage of shipments delivered within the temperature 

bounds, is above 98%. High success rates raise questions about diminishing returns on 

investment and whether the delivery operations are implemented in the most cost-effective 

way.  The company is also currently moving towards the standardization of their packaging 

solutions for their temperature-sensitive goods to reduce complexity and add agility to 

their warehouse operations, for example, by using one pack-out instead of a summer 

configuration and winter configuration. 

1.1 Problem Statement and Objectives 

As the sponsor evolves into a biopharma company, product formulation and delivery have 

resulted in highly complex supply chains. Due to the overall company strategy, the number of 

products requiring temperature control throughout the supply chain is vastly increasing. 
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Furthermore, global regulatory agencies currently have more critical requirements pertaining 

to the temperature controls needed in products, including its room temperature, to guarantee 

proper functionality, thus, creating increased challenges to control passive container 

temperatures along the supply chain. 

To handle temperature-sensitive products, two families of temperature control solutions 

are used by the pharmaceutical industry: active systems and passive systems (Zaharia, 2021). 

This research will focus on the cooling solutions: active cooling and passive cooling. Active 

cooling uses a heat-reducing mechanism through an electromechanical apparatus to preserve 

temperature, which is entirely dependent on energy consumption to function. Passive cooling 

on the other hand, uses a configuration of thermal insulators and cooling packs that protect the 

payload from excess heat entering from its surroundings. In addition, passive cooling requires 

no external power source after being packed and shipped. An essential component of passive 

cooling solutions is cooling gel packs, which are bags filled with a high thermal capacity gel. 

These gel packs are used as a heat sink to protect temperature-sensitive cargo.  

Two main types of thermal conditioning gels are used: summer and winter. The “summer” 

type is used for temperatures where the outside weather conditions are higher than the target 

temperature range, and these gel packs are used frozen. In the summer configuration, space 

between the gels and the product is added to avoid freezing the product. “Winter” gels, on the 

other hand, are only refrigerated and are used when the ambient temperature conditions are 

lower than the lower bounds of the target temperature range.  

This research will examine passive temperature control solutions utilizing the EPS 11 Box 

and its different configurations. Key elements comprise the boxes themselves, which act as 
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insulators, the gel packs used to preserve temperature, the TagAlert temperature monitor, and 

the payload. Figure 1.1 depicts an example configuration for a summer lane.  

Figure 1.1 

EPS 11 Box Summer Configuration Example 

 

Each drug substance production involves a variety of production steps with many facilities 

across the globe. In addition, shipping of many raw materials is done below -60°C, by utilizing 
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packaging solutions that use liquid nitrogen and dry ice among others as a means of 

temperature control. A representative overview of the company’s supply chain is illustrated in 

Figure 1.2, where two primary components are presented, the manufacturing process and the 

in packaging and shipping process. 

Figure 1.2 

Typical Representation of Drug Manufacturing Process within the Supply Chain 

 

When raw materials are transformed and packed in the final vials or prefilled syringes as 

drug products, the final temperature requirements are within the range of 2° to 8° C. This is 

the moment when the delivery process initiates.  

Upon reception of the finished and packaged goods to the sponsor company’s warehouse, 

the shipping and the delivery process to the end customer is fulfilled from the sponsor 

company’s warehouse.  

The sponsor company’s uses a representation of their existing supply chain of 

approximately 30 hours for delivery to the end customer. The numbers in this representation 

will be used in this research and are based on conservative estimates of the longest delivery 

windows in the US.  Figure 1.3 depicts this process. 
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CenterCustoms
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Figure 1.3 

Typical Representation of Drug Shipping Process to the End Customer  

 

The stages of the delivery process are as follows: 

Step 1. Shipping starts from the product storage in the warehouse, where a transporter picks 

up the container from the distribution center and transports it to a local hub. (Approximately 

10 hours) 

Step 2. The product container is loaded in a second truck and delivered to the airport and 

handled at a sort-hub. (Approximately 7 hours) 

Step 3. The product is placed on the tarmac and travels to the airport gateway at the 

destination. (Approximately 6 hours) 

Step 4. The product is loaded in the courier’s trucks to be delivered and stored at the 

courier’s hub. (Approximately 4 hours) 

Step 5. The drug products are delivered to the end customer. (Approximately 3 hours) 

Warehouse Local hub Airport 1
Sort-hub

End 
Customer

Courier 
Gateway

10 hours 7 hours 6 hours 4 hours

30 hours

3 hours 

Courier 
Hub
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The research and development arm of the sponsor company currently performs internal 

testing and qualifications using the Parenteral Drug Association (PDA) Qualification Process 

for all its cold chain shipping solutions. Due to the complexity of the possible temperature 

control solution configurations, lab testing for new solutions is highly resource-intensive due 

to several reasons: 

1) High-cost investments are required for each test.  

2) The potential shipping solutions and configurations are numerousness.  

3) Development and qualification testing for packaging solutions require time for approval, 

which is not aligned with expected lead times.  

As such, testing is a time-consuming activity, and it is not practical to create a thermal 

profile for each case delivered within these containers. As of 2021, the annual volume of 

passive containers shipped by the company in the U.S. is over 160,000. This creates the need 

for predictive model that monitor and evaluate temperature profiles of their passive containers. 

Moreover, assessing the likelihood of success or failure of a proposed packaging solution 

might increase the percentage of successful deliveries to their destinations. Providing early 

information on potential failure payloads would provide insights to the operations teams to 

focus their resources, thus leading to cost savings in the long term. 

The objective of this research project is to deliver a predictive model that enables the 

company to evaluate the performance of their passive containers for drug products along the 

supply chain and will predict whether the internal temperature stays within the required bounds 

during transit to the end customer. The geographical scope is based in the United States, using 
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data from sample passive container laboratory tests that contain temperature time series 

profiles for their summer and winter seasons.  

This study will also examine the packaging options used to ship temperature-sensitive 

goods for the sponsor company and study the current solutions to find a mathematical model 

that can better predict the success of a specific solution for a given scenario. The main 

deliverables for the model will include the following: 

1) An initial test model for the sample case data to predict the inner container 

temperature along a typical representation of the company’s supply chain. 

2) A validated model that will predict the likelihood of solution success against 

different ambient temperature profiles. 

3) A model which will predict the success of the container due to changes in its 

components and estimate its performance against various ambient temperatures. 

4) Recommendations on improving the configuration of cases to certain stress 

conditions or scenarios. 

5) Optimal configuration suggestions for the containers in summer and winter ambient 

conditions. 
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2. LITERATURE REVIEW 

In this research, different traditional forecasting, machine learning-based forecasting, and 

simulation techniques will be explored to identify the most suitable approach to model the 

temperature changes throughout the sponsor company’s temperature-controlled supply chain. 

The literature review section will discuss the current literature and give a summary of 

approaches other researchers have used to solve similar problems. Additionally, passive 

packaging solutions for the cold supply chain will be discussed to understand the main factors 

that impact the inner temperature profile performance.  

The literature review will be organized as follows:  

Section 2.1 discusses temperature prediction methodologies, machine learning-based 

approaches, and simulation. This section will also address possible approaches to implement 

an initial test model. Possible approaches to validate the model will be discussed. The solutions 

will be discussed and compared to identify existing gaps in the literature and define preliminary 

characteristics in the model.  

Section 2.2 presents the configurations of passive packaging in cold supply chains to 

predict the performance of the packaging solution due to changes in components across various 

ambient temperatures. 

Finally, Section 2.3, will identify and summarize gaps in previous research and propose a 

solution, and contributing to the literature.  
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2.1 Temperature Prediction Models 

Estimating the inside temperature of passive packaging is a complicated task due to the 

number of variables that affect the inner controlled atmosphere. This task can be tackled with 

two different classes of models: physical or white-box models and data-driven or black-box 

models (Mustafaraj, Lowry, & Chen, 2011). Physical models are based on energy and mass 

balance integral–differential equations, where physical properties of the system are known. In 

contrast, data-driven models are extrapolatory and explanatory by relating to past or future 

information. Data-driven models investigate statistical information to understand correlation 

within historical or causal data, estimating patterns when relationships of factors in the system 

are unknown. Black box models depend entirely on experimental data and therefore can be 

used when measurements of the system are available. A third category of models is also used 

that combines both approaches, which are referred to as gray box models, (Berthou, Stabat, 

Salvazet, & Dominique, 2014). This project will focus on black box modeling approaches due 

to the lack of thermal property and physical characteristics data of the packaging. The 

approaches used will range from traditional statistical forecasting to machine learning models. 

2.1.1 Forecast Prediction Models 

Concerning temperature prediction models, temperature forecasting is usually employed 

to predict the likelihood of future conditions with many implications and aspects in society. In 

food supply chain management, predicting temperature along the supply chain is critical to 

guarantee food quality, as perishable items degrade depending on environmental conditions of 

storage and transportation facilities, thus impacting the supply chain’s performance (Rong, 

Akkerman, & Grunow, 2011).  
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Nowadays, forecasting includes many methodologies and techniques that can be applied 

for temperature predictions. These methodologies can be broadly classified into quantitative 

and qualitative forecasting; the former is employed when historical data is available, given the 

aspects of past patterns will continue in the future. Some examples of quantitative forecasting 

include the naive approach, causal or econometric forecasting methods, time series analysis, 

and artificial intelligence, among others (Narvekar & Fargose, 2015). This project will focus 

on quantitative analysis of the relationships across historical and casual variables to predict the 

inner temperature of the packaging solution across the company’s supply chain. This project 

will therefore study how different forecast methodologies may be applied to increase forecast 

accuracy for the temperature model of the passive temperature control shipping solution.  

The most common quantitative forecasting approaches used in the industry are time series 

forecasting and regression methods. These models use historical data to predict what is likely 

to happen in the future. Most time series and regression methods rely on key parameters, such 

as level, trend, and seasonality, or a combination of them. Depending on the method selected, 

recent historical data might have a higher impact by adding different weights to the values 

used. The impact of real-time data is even more crucial for temperature forecasting as the 

shipping process has distinct stages in the supply chain, where changes in the environmental 

conditions directly impact the delivered package's inner temperature and its performance (Ben 

Taieb, Bontempi, Atiya, & Sorjamaa, 2011). 

In this project, forecasting methods that do not include trends or use seasonality as the main 

factor of prediction were discarded, as the sponsor company delivers throughout the United 

States during the whole year. Some relevant approaches were explored including 

autoregression, double exponential smoothing and automatic model selection algorithms for 
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ARIMA, given their proven track of considerable accuracy. (Makridakis, Spiliotis, & 

Assimakopoulos, 2018) 

2.1.2 Traditional vs. Machine Learning Techniques for Forecasting 

Machine learning methods have been proposed in the past few decades as an alternative to 

statistical methods for time series forecasting. As a result, a promising array of their 

applications in many fields is available and is ever increasing. Machine learning is used in an 

enormous range of applications, from predicting financial series, to macroeconomic variables, 

to stock market analysis, to image recognition. The preference is especially pronounced where 

traditional forecasting methods have certain limitations (Makridakis, Spiliotis, & 

Assimakopoulos, 2018).  

Traditional forecasting methods such as exponential smoothing and moving averages differ 

vastly from machine learning methods in their capabilities. For example, traditional time series 

take into consideration a single or a few factors, including trends, levels, and seasonality, and 

their limitations on the number of predicting factors for creating accurate forecasts. On the 

other hand, machine learning analytics may incorporate an unlimited source of predictor 

variables by using learning algorithms to identify underlying drivers and uncover insights from 

the provided data. Machine learning algorithms are also highly dependent on data availability. 

Table 2.1 summarizes the main differences between traditional and machine learning 

approaches. 
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Table 2.1 

Comparison of Traditional and Machine Learning Forecasting for Time Series Models 

(adopted from Kharfan & Chan (2018)) 

 Traditional Forecasting Machine Learning Forecasting 

Number of features Limited to single or a few Extensive 

Data source Mainly historical data Multiple 

Algorithms A few single-dimension algorithms An array of integrated algorithms 

Need for manual data 

manipulation and cleaning 

High Low 

Data requirements Low High 

Technology requirements Low High 
 

Due to the advancement of computational processing and capabilities, an increasing 

amount of research comparing both traditional and machine learning performance and 

accuracy for time series analysis exists. However, according to the literature, there are mixed 

outcomes in the performance of both approaches. In their work, Makridakis et al. (2018) 

studied the eight most common statistical methods for time series analysis, from Naïve to 

ARIMA, against ten different machine learning models, most prominently using K-Nearest 

neighbors, CART regression Trees, and Support Vector Regression. It was shown that simple 

statistical models might outperform ML forecasts when data is limited, failing to learn from 

each forecasting horizon. In contrast, Smadi & Mjalli (2007) implemented a forward neural 

network (FFNN) and autoregression time series models (AR) for forecasting the annual air 

temperature data, where the former gave better forecasts and aid in identifying the dynamics 

of temperature time series. Another study by Mateo et al. (2013) focused on inner temperature 

forecasts in buildings, compared Extreme Learning Machines and Multilayer Perceptron 

(MLP) Artificial Neural Networks against simple machine learning methods based on linear 
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approximations, such as multiple linear regression, robust linear regression, and autoregressive 

exogenous models. It was found that both MLP models and simple autoregression methods 

have comparable outcomes. The above suggests the importance of comparing traditional and 

complex methodologies to benchmark the performance of modeling approaches. 

Additional improvements on traditional time series forecasting combined with machine 

learning methods incorporate the prediction of several future observations of a given sequence 

of historical observations, referred to as multi-step ahead time series forecasting (Ben Taieb & 

Hyndman, Boosting multi-step autoregressive forecasts, 2014).  In this project, three main 

strategies of interest related to temperature multi-step ahead forecasting will be applied: 

Recursive (Rec), Direct (Dir), and Direct Recursive (DirRec) combination, (Ben Taieb, 

Bontempi, Atiya, & Sorjamaa, 2011).  The recursive strategy focuses on creating one model 

for predicting one time-step and incorporating the predictive value as an input to predict 

subsequent n time steps to the horizon's end. On the other hand, the Direct method creates 

distinct forecast models per step ahead, as no approximations of values are used. Lastly, the 

DirRec method aims to combine Direct and Recursive methods to decrease the accumulated 

errors as the direct method while analyzing the intricate, complex relationship of historical 

values from the recursive methods. 

Mentink (2018) applied a DirRec methodology to predict the internal package temperature 

based on the ambient temperature profile during transportation for a pharmaceutical company, 

applying an optimized quantile linear regression approach on internal and external temperature 

coefficients. In another study by Suradhaniwar et. al. (2021), one-step vs. multi-step ahead 

recursive forecasting was compared using agrometeorological time series of temperature and 

humidity. In their research, SARIMA, Linear Regression, and Support Vector Regression 
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machine learning methods were compared against deep learning approaches, such as 

Multilayer Perceptron and Recurrent Neural Networks, the latter with better performance on 

both forecasting strategies. As such, the literature reviewed shows the modeling of the 

temperature the with promising applications to our package forecast problem. 

2.1.3 Deep Learning Methods and ML Applications 

Deep learning methods are a category of machine learning approaches that use algorithms 

that mimic the human brain’s learning process. This concept is applied Artificial Neural 

Networks (ANN), which learn from large amounts of data. ANN differs from other machine 

learning methods from a modeling perspective as they are trained with more than two non-

output layers, i.e., hidden layers, that extract and infer patterns from the data through a black-

box modeling approach. 

Many applications of deep learning for temperature forecasting and cold supply chain 

management exist. Xu et al. (2014) used neural networks to categorize the risk of 

environmental fluctuations in the supply chain management, including temperature control, 

humidity monitoring, and temperature interruption time, assessing their impact on different 

points in the cold chain logistics, such as temporary storage, loading and transport. The output 

of the system was represented by a binary variable (0 meaning risk is low and 1 meaning risk 

is high). Indicators were then developed at different points in the supply chain to examine the 

effects of temperature fluctuation. In another study, Tan et. al. (2020) used backpropagation 

neural network (BP-NN) and Long Short-Term Memory Neural Network (LSTM-NN) as 

reliable methods to predict glazed frozen squid storage time at different temperatures (Tan et. 

al., 2020). 
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According to Makridakis et. al. (2018), the most used neural networks time series 

forecasting based on the current research are Multi-Layer Perceptron (MLP), Bayesian Neural 

Network (BNN), Radial Basis Functions (RBF), Generalized Regression Neural Networks 

(GRNN), Recurrent Neural Network (RNN), and Long Short-Term Memory Neural Network 

(LSTM- NN). All deep learning techniques aim to perform computations through multi-layer 

neural networks where data is processed for building a data-driven model. Considered the 

foundation of deep learning architecture, MLP is a type of feedforward ANN supervised 

learning approach built by three essential layers: input, output, and hidden sections. BNN 

extends the MLP method by optimizing the network parameters using Bayesian estimations 

with Gauss-Newton algorithms. RBF follows the same MLP network, switching the sigmoid 

activation function for a linear combination of functions radially to the center. GRNN is a 

variant of RBF with an additional summation layer, with improved learning capabilities and 

lower processing times. RNN Models uses MLP with feedback connections to consider 

previous states with current inputs. At the same time, LSTM extends this concept with “gates”, 

helping to regulate the flow of information through each unit. 

This study will implement a LSTM-NN deep learning method given its ability to 

understand sequential data, interpret time series given time lags of unknown duration, and 

remember information for long periods of time. 

2.1.4 Simulation Model Approach 

Simulation is the process of creating a software model of a physical system to predict its 

performance in the real world, and as the goal of any cold chain setup is the preservation of 

temperature integrity of goods throughout the supply chain, possible insights can be found 

through simulation-based approaches. Zwierzycki et al. (2011) at the Institute of Machines and 
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Motor Vehicles of Poznan University of Technology approached this problem by creating 

original computer software for heat exchange simulation to forecast temperature changes 

during transport (Zwierzycki, et al., 2011). The experiment involved cooling the load and 

monitoring its temperature. In the tests, such parameters as thermal insulation of the body, the 

original temperature of the load, cooling efficiency of the unit, and ambient temperature were 

examined to provide insights.  

Zwierzycki et al. (2011) also analyzed two cases through their simulation. The decisive 

factor resulting from the numerical forecast was confirmed by the results of an insurance 

company’s investigations for both cases. This research will use a similar approach to 

Zwierzycki et al. (2011) to simulate possible scenarios to test the resulting model.  

2.2 Internal Configurations on Passive Temperature Control Solutions 

Temperature monitoring and control have been rapidly advancing in recent years due to 

the nature and complexity of sensitive and perishable product logistics. Every aspect of the 

supply chain, such as production, storage, and transportation, is involved to ensure quality and 

performance of goods produced and distributed to end customers. (Xu, Zhang, Gong, & Guan, 

2014).  

Perishable and sensitive products are also a fundamental source of revenue for the cold 

chain logistics enterprises, typically including biological substances, vaccines, pharmaceutical 

products and drugs, dairy products, fresh food, and horticultural products, among others. To 

safe gaurd these revenue stream and mitigate risk, the role of packaging systems in logistics is 

crucial in protecting product quality and shelf life. Compliance with standards and general 
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rules, as well as concerns about environmental sustainability are also at the forefront when 

considering passive temperature control solutions (Accorsi, Manzini, & Ferrari, 2013). 

Sensitive products in passive temperature control solutions are usually shipped in dry 

containers, equipped with a wide variety of insulating materials. The choice of the materials in 

the package depends largely on the product’s water content and its resulting interaction with 

the environmental humidity and temperature (Accorsi, Manzini, & Ferrari, 2013). 

Previous research has already defined the primary decision factors to consider when 

designing the configuration of packaging options (Pillai, 2014). Focusing on the 

pharmaceutical industry, Figure 2.1 demonstrates the rationale for cold chain packaging 

choices, guiding drug makers and carriers on the best way these products might be delivered. 
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Figure 2.1 

Decision-making for Packaging Options in the Cold Supply Chain. (Mentink, 2018) 

 

The importance of the decision-making levels differ by industry. Level 5 is key for the 

pharmaceutical industry, especially since many products are high value and of high 

temperature sensitivity.  

Many factors affect the decision making process of the final configuration of a packaging 

solution. Most of the crucial factors depend on the product type, temperature range 

requirements, ambient conditions of the origin and destination, seasonality, and length of the 

supply chain delivery process. The main elements for passive packaging components that drug 

makers can adjust are the number and initial temperature of gel packs, the addition of thermal 

Level 1
• Cost of Packaging

Level 2
• Shipper's concern about the capacity of the packaging system to withstand 

unexpected ambient temperature
Level 3

• Actual travel distance
• Selection of distribution circuit
• Shipper's concern about the supervision and maintenance during transportation
• Shippers concern on the packaging system's reliability during transportation

Level 4
• Shipper's concern about the temperature profile of the origin and destination 

location
Level 5

• Size and weight
• Temperature range requirements of the product
• Temperature excursion tolerance level

Level 6
• Product type
• Time to Market
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blankets for improved insulation quality, and phase change materials1 as a buffer for absorbing 

latent heat that provides stability of the inner temperature conditions. As per the problem 

statement, further exploration of packaging configuration options is needed, and insights may 

ultimately lead to savings in overall landed costs. This research will explore and incorporate 

these configurations in the modeling approaches. 

2.3 Conclusion 

As there are limited studies in the literature on how passive cold chain solutions can be 

modeled with pre-qualification lab testing results, this research will apply and compare the 

following of the previously mentioned approaches (see Figure 2.2). 

Figure 2.2 

Modeling Methods Used in this Research 

 

 

1 A phase change material is a substance which releases or absorbs energy at phase transition to for heating 
or cooling applications. 
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Utilizing the given data, machine learning and classical forecasting approaches will be used 

to create the model, while different scenarios will be applied to test the proposed solution for 

the supply chain operations of the sponsor company throughout the United States, across 

different temperature conditions and package configurations.  

The methods used in this research were selected based on their capability to incorporate 

the external temperature as a predictor of the internal passive package solution with minimal 

effort. Additionally, from a business perspective, models are only useful if they can be 

interpreted and implemented by the end-user. This careful consideration led this research to 

implement such models as mentioned earlier.  

The expected outcome is to provide the sponsor company with simple but powerful 

methods that assess the impact the external temperature conditions may have on their 

deliveries, evaluating the conditions where the payload will reach their destinations within 

their temperature bounds.  
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3. DATA AND METHODOLOGY 

This section will cover the methodology used to model the cold chain operations for the 

sponsor company. The key outputs to deliver will be predictions of temperature ranges of the 

goods. This research will start by collecting the data from the sponsor company on their 

network setup and the packaging solutions used. After the data is collected, the data available 

will be reviewed, and the preliminary analysis will be carried out. Upon the results of the 

analysis, the data will be transformed into a shared format between all datasets while also 

removing any redundancies and correlated data features that could skew the model by means 

of deletion and averaging. The candidate algorithms and relevant data features will then be 

selected and modeled. Finally, this project will conclude by comparing the models created 

through testing and evaluation. Figure 3.1 shows the research workflow.  

Figure 3.1 

Research Workflow 

 

3.1 Data Collection 

Time series temperature data from prequalification testing was collected from the sponsor 

company for three of their packaging solutions which utilize the EPS 11 box. This data results 

from lab testing in a temperature-controlled environment of the temperature changes at various 
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stages throughout the supply chain. The sponsor company does the prequalification testing by 

setting up three test boxes in a temperature-controlled chamber. The temperature in the 

chamber is then adjusted to simulate the changes in ambient temperature during shipping and 

delivery as per the standard UPS delivery scenario environments for summer and winter for: 

1) UPS facilities, 

2) modes of transportation, and 

3) any other stops on the way to the final destination. 

Table 3.1 shows the temperature steps simulated in the prequalification testing and the 

corresponding stage in the UPS supply chain network. 

Table 3.1 

The UPS Environment Temperature Profile Conditions for Winter and Summer 

Step Mode of Transport Total Time 
(hours) 

Winter 
(°C) 

Summer 
(°C) 

Stage in DC Storage 9.5 22 22 
Pick up at DC to Local Hub Truck 0.5 10 35 

At Local Hub Storage 2.5 5 30 
From Local Hub to Sort Hub Truck 5.0 5 28 

At Sort Hub Storage 1.5 5 28 
Stage on Tarmac Storage 0.25 0 28 

In transit to Airport Gateway Aircraft 2.75 5 28 
At Airport Gateway Storage 1.25 0 28 

In transit to local UPS facility Truck 0.75 -5 28 
At destination Storage 1.25 5 30 
With Courier Truck 2.25 0 30 
With Courier Truck 3 0 35 

 

The EPS 11 box has two configurations; the summer configuration with gels conditioned 

between -3°C and -10°C, and the winter configuration with gels conditioned at 5°C. The 
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decision between using the summer profile and the winter profile for a package is made 

according to the temperature at the destination, i.e., if the temperature at the destination is 

above 42 °F ≈ 5.5 °C, the summer configuration is used. Otherwise, it is packed as per the 

winter configuration.  

Table 3.2 shows an excerpt of the raw data provided. The original datasets reviewed are 

split into three feature families:  

1) Time,  

2) The actual thermal data from the thermocouples2 TC1-TC11, and  

3) The step temperature, which mimics the temperatures while the shipment is being 

delivered. 

Table 3.2 

Excerpt of the Prequalification Data for -3°C Test Configuration 

Step Time 

Product Thermocouples Chamber 

Thermocouples Box 1 Box 2 Box 3 

TC1 

(°C) 

TC2 

(°C) 

TC3 

(°C) 

TC4 

(°C) 

TC5 

(°C) 

TC6 

(°C) 

TC7 

(°C) 

TC8 

(°C) 

TC9 

(°C) 

TC10 

(°C) 

TC11 

(°C) 

22 09:25:00 3.5 3.4 3.5 4.1 4.0 3.8 4.6 4.6 4.5 15.6 4.3 

22 09:35:00 4.4 4.6 5.4 4.4 2.6 3.8 3.3 1.2 2.4 18.9 19.4 

22 09:45:00 3.5 3.9 3.9 3.5 1.6 2.8 2.8 1.1 2.3 19.6 20.5 

22 09:55:00 3.7 4.6 4.5 3.8 2.1 3.3 3.3 1.7 3.1 19.8 20.9 

22 10:05:00 4.2 5.1 5.0 4.3 2.7 3.8 3.9 2.3 3.7 19.8 21.0 

 

2 Thermocouples are an electrical device consisting of two dissimilar electrical conductors used to measure 
temperatures by the flow of electricity 
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The 11 thermocouple time series are split as follows: 

1- Three thermocouples on each of the three test packages. TC1- TC9. The 

thermocouples are positioned on the vials, the exterior cartons, and the TagAlert 

systems for each test package, for a total of nine product temperature monitors. 

2- Two testing chamber thermocouples, TC10 and TC11, positioned on the top left 

front edge and the bottom right rear edge of the chamber. 

3.2 Data Review 

This section will discuss and review the available data. The data review started with 

transformation of the data and a preliminary analysis. Since the prequalification testing tests 

three versions of the same solution at the same time in the same environment, the data is of 

high quality. Upon preliminary analysis, we see that the nine temperature readings from the 

thermocouples on the boxes are highly correlated, as can be seen from Table 3.3. 

Table 3.3  

Correlation between TC1-TC11 for the -3°C Configuration 

 TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9 

TC1 1 - - - - - - - - 

TC2 0.998 1 - - - - - - - 

TC3 0.9957 0.9994 1 - - - - - - 

TC4 0.9981 0.9925 0.9885 1 - - - - - 

TC5 0.9882 0.9773 0.9708 0.9955 1 - - - - 

TC6 0.9997 0.9972 0.9947 0.9986 0.9899 1 - - - 

TC7 0.9987 0.9938 0.9899 0.9997 0.9938 0.9989 1 - - 

TC8 0.9958 0.9888 0.9837 0.9987 0.9959 0.9964 0.9989 1 - 

TC9 0.9908 0.9969 0.9987 0.9815 0.9611 0.9899 0.9833 0.9762 1 
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The chamber thermocouples, TC10 and TC11, are also very close to each other, which is 

expected as the temperature changes are not instantaneous in the chamber. The average 

difference between TC10 and TC11 is 1.2°C for each step, with the maximum difference being 

1.6°C, and the minimum being 0.1°C 

3.3 Data Preparation 

The datasets for the three configurations were transformed and normalized. Initially, the 

time and date data were normalized into a time series in hours, starting at 0 with a step of 

approximately 0.167 hours, representing 10-minute increments. 

The reading from the thermocouples placed on the vails containing the product will be the 

input considered, i.e., TC1, TC4, and TC7. These thermocouples were chosen as they are the 

closest to the real temperature of the product. These readings are all highly correlated, as can 

be seen from Table 3.4. 

Table 3.4 

Correlation between TC1, TC4, and TC7 for the -3°C Configuration 

 TC 1 (°C) 
On Vial 

TC 4 (°C) 
On Vial 

TC 7 (°C) 
 On Vial 

TC 1 (°C) 
 On Vial 1 - - 

TC 4 (°C) 
 On Vial 0.9974 1 - 

TC 7 (°C) 
 On Vial 0.9994 0.9978 1 

 

Since both thermocouple TC10 and TC11 readings in the dataset move in tandem, the 

temperature of the testing chamber will be taken as an average between them, i.e., from the top 

left front edge of the chamber and the bottom right rear edge.  
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3.4 Statistical Methods  

This section describes the two types of traditional statistical algorithms selected to compare 

the outcome of machine learning methods: Linear Regression and Autoregressive Integrated 

Moving Average (ARIMA). 

3.4.1 Linear Regression – Autoregressive models 

Linear regression is a method that aims to model a linear relationship between two types 

of variables: the input variable x is known as the explanatory variable, and the output variable 

𝑦 is referred to as the dependent variable. If there are two or more explanatory variables, then 

the method is referred to as multiple linear regression. The form of the linear relationship is as 

follows: 

𝑦 = 𝑏! + 𝑏"𝑥#" + 𝑏$𝑥#$ +⋯+ 𝑏%𝑥#% + 𝜖																																																															(3.1) 

where 

𝑦: Predicted or dependent variable 

𝑥: Feature or explanatory variables  

𝑏: Coefficient for each explanatory variable 

𝜖: Modeling error, noise, and disturbances for forecasting model 

Frequently in time series data, observations at the current and previous time steps impact 

the values in the steps ahead. This method, called autoregression or regression of self, assumes 

that input variables are taken as observations at previous time steps, called lag variables 

represented as 𝑦&, 𝑦&'", to 𝑦&'%, each lag contains its own autoregressive coefficient 𝑏. As an 
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example, predicting the next time step using the observations at the current and previous steps, 

the regression model takes the following form: 

𝑦&(" = 𝑏! + 𝑏"𝑦& + 𝑏$𝑦&'" + 𝑏)𝑦&') 	+ 𝜖																																																														(3.2) 

Given that the regression model utilizes data from the same input variable at previous time 

steps, there is a statistical analysis to measure the correlation between the predicted value and 

the number of lagged observations of the dependent variable. Correlation is helpful to identify 

the number of lag variables to use, and the weighting of the previous values impacting the 

predicted values.  

The classical AR model does not take into consideration external factors, only lags from 

the input variable. Given these limitations, the AR method cannot evaluate the impact of the 

ambient temperature on the next predicted inner package temperature. Thus, in this capstone 

project, AR will be used only as a benchmark for complex models that incorporate external 

factors. 

3.4.1.1 Autoregressive linear models with Exogenous factors (ARX). 

A special extension of the simple AR method is incorporating external variables, i.e., 

variables that are not affected by other variables in the system. An everyday example would 

be how weather, pesticides, farmer skill, and availability of seeds are independent variables in 

the process of crop production. In our specific model problem, ambient temperature is a 

variable that is external to our package delivery but has a direct impact on the inner product 

temperature. This type of variable is called an exogenous factor, also known as a causal factor. 

By using ARX, this capstone project will aim to estimate the relationship of the inner 

package temperature lags, while assessing the impact of the ambient temperature profiles as 
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an exogenous variable. Preliminary correlation analysis done in Section 4.2 shows that ambient 

temperature highly correlates with all inner temperature measures from the thermocouples used 

on the summer and winter data (TC1 to TC9).  A model that attempts to link historical past 

values and ambient temperature is shown below, as applied by Mentik (2018), following a 

simple regression model format. For forecasting the inside temperature 𝑦& is replaced by 𝑦&,+,,, 

given the forecast model depends on the lane (l) and season, and the packaging option used (p) 

for each step for the lag feature (h) in the horizon (H): 

𝑦&(-,+,, = 𝑦&(-'%,+,, + 𝛽-,,0𝑋&(-,+ −	𝑦&(-'%,+,,3																																																												(3.3) 

Equation (3.3) predicts the inside temperature based on the previous inside temperature 

steps 𝑦&(-'%,+,,	plus the impact of the ambient temperature compared to the inner temperature. 

In this formula, the bigger the difference between the ambient temperature and the inside 

temperature, the higher the impact. Given the previous inside temperature 𝑦&(-'%,+,,, a 

modifier factor β estimates how vulnerable packaging option p is to the ambient temperature 

conditions 𝑋&(-,+. 

In this capstone project, the approximated ARX model will be used as a forecast model 

and as a comparison for other classical and machine learning models. Section 3.6.4 will discuss 

how this model is adapted to include multi-step ahead methods for improved accuracy. 

3.4.2 Autoregressive Integrated Moving Average (ARIMA) 

ARIMA models are time series methods that incorporate a linear regression of lags from 

autoregression (p), an integrated part from the differences of raw observations (i), and moving 

average used to measure the dependency between an observation and residual errors from the 

moving average model applied to lagged observations (q). The model incorporates a dependent 
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relationship across historical values and lagged observations. The model is then transformed 

into a stationary time series by removing trend and seasonal factors. A regression is developed 

considering the error values between actual data and fitted values. The benefits of an ARIMA 

model are that it can assign appropriate weights for older lags, in contrast to more traditional 

methods like exponential smoothing which cannot, as they always assign a higher weight to 

recent values. 

Classical ARIMA models do not take into consideration external factors. Given these 

limitations, ARIMA methods cannot evaluate the impact of the ambient temperature into the 

next predicted inner package temperature value. In this capstone project, ARIMA will be used 

only as a benchmark for complex models that incorporate exogenous factors. 

3.5 Machine Learning Methods  

This section describes the five types of machine learning algorithms selected to compare 

the outcome of traditional statistical forecasting methods: Random Forests, Support Vector 

Machines, Neural Networks, and K-Nearest Neighbors. 

3.5.1 Regression Trees and Random Forests 

Regression trees are a subgroup of a family of nonlinear predictive models, namely 

prediction trees.  Regression Tree (RT) models are unsupervised machine learning algorithms 

that classify the array of outcome records into smaller regions by creating splits on predictors, 

i.e., partitioning, leading to more manageable data interactions for analysis. These splits, called 

prediction trees, represent the recursive partition. Each terminal node represents a partition cell 

and has attached a simple model that applies in that cell only. The prediction trees create logical 
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rules from the training set that are interpretable. In the case of regression trees, a further 

regression can be applied to each subset of data to improve forecast accuracy. 

Random Forests extends the regression trees by applying many individual decisions trees 

as an ensemble. The ensemble method integrates the predictions from multiple decision tree 

algorithms by generating random samples from testing data and using a random subset of the 

predictors at each run. The outcome aims to improve the performance and accuracy of the 

forecast compared to the individual decision trees. 

3.5.2 Supported Vector Machines (SVM) 

Supported Vector Machines (SVM) are supervised learning algorithms used for both 

classification and regression analysis, (Shmilovici, 2009). SVM aims to partition the time 

series data in different classes by a line or a hyperplane. By setting this separator and 

identifying the supporting vectors, which are the closest points from the partition, the algorithm 

aims to maximize the distance across different classes, known as margin, and to evaluate the 

fit’s quality by minimizing the expected error of the loss function. An optimized hyperplane is 

created from the training set to separate the data into classes in all SVM applications. SVM 

can also incorporate kernel functions and hyperparameters to classify nonlinearly distributed 

data, thus applying a regression method to predict future values. 

3.5.3 k-Nearest Neighbors (k-NN) 

k-Nearest Neighbors are a non-parametric approximation learning algorithm that is based 

on the idea that new values can be classified or predicted given the similarities to the training 

data. The closeness of two samples is defined by a distance function, where the algorithm finds 

k training examples closest to the feature vector and returns the majority label, in case of 
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classification, or the average label, for the case of regression. Typically, Euclidean distances 

are used to estimate closeness across neighbors. 

3.5.4 Artificial Neural Networks (ANN) 

An Artificial Neural Network (ANN) is a set of algorithms that aims to learn and identify 

patterns resembling the workings of the human brain. Neural Networks aim to understand a 

relationship across input and output data, capturing complex non-linear relationships among 

the variables in a flexible format. The typical ANN architecture consists of three main 

elements: input layer, hidden layer, and output layer. The Input layer receives and incorporates 

the information into the model, the hidden layer calculates relationships and patterns across 

the input data, and lastly, the output layer consolidates and returns the results from the network. 

Each layer is composed of interconnected units or nodes that, depending on their assigned 

weight, can impact the outcome of the nodes of the next layers. Activations functions can be 

defined to determine whether a given node can be activated or not.  

There are many configurations of neural networks used for time series regressions. In our 

capstone project, a Long Short-Term Memory Neural Network (LSTM-NN) will be 

implemented. Deep learning methods differ from simple neural networks given the models are 

trained with more than two non-output layers. The parameters are updated accordingly using 

a backpropagation algorithm, estimated by the correct weights for each connection between 

the nodes of adjacent layers in our training set. Once the weights are learned correctly, the 

trained neural network can be used to make predictions for future values. 
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3.6 Multi-step Ahead Forecasting Strategies 

Time series forecasting approaches are classified into two main categories: one-step 

forecasting and multi-step ahead forecasting. The former method predicts a single value of a 

historical time series. Multi-step forecasting approaches, on the other hand, consist of 

predicting the next series of steps given a historical time series composed of N observations. 

Since predicting the inner package temperature requires the actual ambient temperature 

conditions, the forecast methods cannot rely on methods that works with actual data from 

previous time horizons. This project applied an n-step ahead forecasting method, testing three 

Single-Output strategies: Recursive, Direct, and DirRec, adopted from Ben Taieb & Hyndman 

(2014). 

f: Functional dependency between past and future observations for the package 

temperature. 

𝑦&  : The forecast of the variable predicted on time t. 

d: Number of previous observations used to predict future values. 

h: Point in time horizon = [t, …, H] 

H: End time of the horizon referencing the package temperature forecasts for test set 

N: Number of observations available in the training set 

w: Fixed value composed of modeling error, noise, and disturbances for forecasting model 
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3.6.1 Recursive Method 

In the recursive method, which is also called Iterated or Multi-Stage strategy, a single 

model f is trained to perform a one-step-ahead forecast, feeding the prediction into the model 

as an input to predict the subsequent time steps.  

𝑦&(" = 𝑓(𝑦& , … , 𝑦&'.(") + 𝑤, 𝑡	 ∈ [𝑑, … , 𝑁]																																																														(3.4) 

The recursive method aims to minimize the one-step-ahead prediction error variance, 

repeating the forecast process until the number of steps to the forecast are reached for the entire 

horizon. With the trained one-step ahead model being	𝑓? the forecasts are given by: 

𝑦!𝑁+ℎ =

⎩
⎨

⎧𝑓
%&𝑦𝑁, … , 𝑦𝑁−𝑑+1'																																																									𝑖𝑓	ℎ = 1
𝑓%&𝑦!𝑁+ℎ−1, … , 𝑦!𝑁+1, … , 𝑦𝑁−𝑑+ℎ'																		𝑖𝑓	ℎ	 ∈ {2,… , 𝑑}
𝑓%&𝑦!𝑁+ℎ−1, … , 𝑦!𝑁+ℎ−𝑑'																										𝑖𝑓	ℎ	 ∈ {𝑑 + 1,… ,𝐻}

																									(3.5) 

An example of a training and test data split is shown in Table 3.5, where predicted values 

are also included in the training set with other historical features to forecast the time steps 

ahead.  

Table 3.5 

Recursive Strategy, Train, and Test Set Split 

       Training Set (N)                Test Set (H) 

t-4 t-3 t-2 t-1 t    

t-5 t-4 t-3 t-2 t-1 t   

t-6 t-5 t-4 t-3 t-2 t-1 t  

t-7 t-6 t-5 t-4 t-3 t-2 t-1 t 
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A special case of this method exists when t equals d, where the model only gets 1 lag 

feature and transform into one-step ahead model. 

3.6.2 Direct Method 

In comparison with the Recursive strategy, the direct method relies only on historical data 

to forecast the predicted new values. Additionally, the direct method utilizes different 

forecasting models to increase the forecasting accuracy, where each model is estimated 

independently. In other words, it does not employ approximated values to compute the 

forecasts, thus eliminating the accumulation of errors. For each time series: 

𝑦&(- = 𝑓(𝑦& , … , 𝑦&'.(") + 𝑤																																																																																												(3.6)  

where 𝑡	 ∈ {𝑑, … , 𝑁 − 𝐻}	𝑎𝑛𝑑	ℎ ∈ {1, … , 𝐻} 

the forecasts are obtained by using the 𝐻 learned models 𝑓%ℎ as follows: 

𝑦!𝑁+ℎ = 𝑓%&𝑦!𝑁, … , 𝑦!𝑁−𝑑+1'																																																																																																		(3.7) 

The main drawbacks of direct strategy are that it requires considerable computational time 

given the many models generated to predict each value in the horizon. This strategy also 

prevents us from considering complex dependencies across forecast values between models. 

In Table 3.6, an example of the various individual models is shown, each with a defined time 

lag.	 
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Table 3.6 

Direct Strategy, Train, and Test Set Split 

       Training Set (N)               Test Set (H) 

t-4 t-3 t-2 t-1 t    

t-5 t-4 t-3 t-2 - t   

t-6 t-5 t-4 t-3 - - t  

t-7 t-6 t-5 t-4 - - - t 

 

3.6.3 Direct Recursive Strategy (DirRec) 

The direct/recursive method (DirRec) applies a combination of the principles from the 

direct and recursive strategies previously discussed. The DirRec uses the approximations 

forecasts of the previous step to predict new values as the Recursive method, simultaneously 

using different models for every step as the Direct Strategy.  

𝑦&(- = 𝑓(𝑦&(-'", … , 𝑦&'.(") + 𝑤																																																																																							(3.8)  

where  𝑡	 ∈ {𝑑, … , 𝑁 − 𝐻}	𝑎𝑛𝑑	ℎ ∈ {1, … , 𝐻}. 

To obtain the forecasts, the end of the horizon H learned models are used as follows: 

𝑦!𝑁+ℎ = )
𝑓%&𝑦𝑁, … , 𝑦𝑁−𝑑+1'																																																									𝑖𝑓	ℎ = 1
𝑓%&𝑦!𝑁+ℎ−1, … , 𝑦!𝑁+1, 𝑦𝑁, … , 𝑦𝑁−𝑑+1'											𝑖𝑓	ℎ	 ∈ {2,… ,𝐻}

																									(3.9)     

  

Combining the strengths of Direct and Recursive methodologies allows us to capture the 

complex dependencies of inner package multiple temperatures time series by calculating 
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approximated values for each step and minimizing the accumulation of errors generated by the 

recursive method alone. 

3.6.4 Temperature Forecast Model Based on Ambient Temperature Profile 

In Section 3.4.1.1 a model that predicts the inside temperature based on the previous inside 

temperature steps 𝑦&(-'%,+,,	plus the impact of the ambient temperature is discussed and 

represented in Equation (3.3). Assuming the ambient temperature has a more significant impact 

predicting future inner temperature values, a naïve simplification can be done to the model to 

consider only one previous forecast (𝑛 = 1) instead of considering multi-step previous 

forecasts. Also, we can assume the factor β is not different for every time horizon (ℎ) but only 

specific cumulative periods i. In this case, rearranging and applying these concepts in Equation 

(3.10) can be written as follows:  

𝑦&(-,+,, = 01 − 𝛽#,,3 ∗ 	𝑦&(-'",+,, + 𝛽#,, ∗ 𝑋&(-,+ 																																																															(3.10) 

Equation (3.11) resembles DirRec strategy discussed on Section 4.4.3, where: 

𝑦&(-,+,, = 𝑓-,, ∗ 𝑦&(-'",+,, +𝑤-,+,,																																																																																								(3.11) 

Where 𝑓-,, is the functional dependency between past and future observations for the inner 

and external temperature at the given line and package configuration, and 𝑤-,+,, accounts for 

the modeling error, disturbances, and noise for the forecasting model. 

𝑓-,, = 01 − 𝛽#,,3																																																																																																																								(3.12) 

𝑤-,+,, = 𝛽-,# ∗ 𝑋&(-,+ 																																																																																																																		(3.13) 
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3.7 Methodology Summary and Conclusions 

This section summarizes the methodology framework to implement a forecasting practice 

to predict inner temperatures for the passive temperature controlled packaging solutions across 

the sponsor company’s supply chain. The process starts with the data collection and 

preparation of the summer and winter EPS 11 Box dataset. Next, select the relevant features 

that best relate to the predicted variable, such as the number of internal temperature lags and 

external temperature. Then a series of data transformations are applied to the data such as 

normalization and logarithm, creating split data sets for training and test sets. Lastly, each 

model is trained and tested for each season’s data set, comparing their performance and 

selecting the best model based on lowest error. Further improvements are made iteratively by 

tuning each model and cross-validating the training data set to obtain the best possible model. 

The results of these methodologies will be discussed in Chapter 4, which will be followed 

by an in-depth discussion in Chapter 5. 
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4. RESULTS AND ANALYSIS 

This section reports on and analyzes the applied models by comparing the resulting 

forecasts to the inner temperatures from the sponsor company’s prequalification testing. The 

first section will cover data normalization and feature selection. Then, classical methods 

including autoregression and ARIMA, will be compared and will further serve as basis for 

comparison to the machine learning forecasting models in Section 4.3. Next, the performance 

of all the models will be discussed and summarized. Lastly, the application of the models in 

new simulated external temperature conditions will be evaluated and discussed. 

Before developing the models, training and test sets were split from the complete set of 

historical values. This split is necessary to have a reference to evaluate the forecast models. 

The training set is used as an input to be fed into the forecasting models, while the test set 

evaluates the performance of the models by comparing the predicted values against the actual 

values. To validate the accuracy of the initial training models from the dataset, a Time Series 

Cross-Validation was performed on the data, averaging the error by 10 k-folds.  

The summer package temperature profile contains 277 data intervals, with a 10-minute 

time interval between each observation. For our analysis, 245 observations were used in the 

training set and 22 observations for the test set. In the winter package dataset, we initially had 

322 observations. For the winter analysis, 290 observations were used in the training set and 

32 observations for the test set. 

Three indicators were used to gauge the performance of the forecast model. These 

indicators are defined as follows:  
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1. Root Mean Square Error (RMSE) – A statistical measurement to evaluate the size of 

the residual errors, by showing the distance between the actual data points and the best-

fit model. 

2. Mean Absolute Error (MAE) – Simplest measure of forecast accuracy that calculates 

the absolute value of the difference between the actual and the forecast value. 

3. Mean Absolute Percentage Error (MAPE) – A statistical measurement to assess the 

forecast accuracy by assessing the model’s performance versus the data used for the 

analysis. 

To find the best-fit model, different forecasting models were applied to determine which 

model produces the smallest RMSE, MAE, and MAPE. The results include the error 

comparison of the three configurations available of the EPS 11 box; the summer configuration 

with gels conditioned at -3°C, the summer configuration with gels conditioned at -10°C, and 

the winter configuration with gels conditioned at 5°C.  

4.1 Data Normalization and Feature Selection 

An initial exploration of the data is shown in Figure 4.1. The level and trend for inner 

temperature vials and ambient temperature are presented for the summer and winter package. 
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Figure 4.1  

EPS 11 Box Summer (top) and Winter (bottom) Temperature Trend over Time 

 

 

 

 

 

 

 

 

 

 

 

Normalization and Logarithmic transform were performed for all summer and winter 

package datasets to find the best fit for the models. Additionally, we also transformed our 

dataset into a logarithmic scale. The correlation analysis presented in Section 3.1 found a high 

positive correlation between internal and external temperatures in each profile setting. To 

further validate the correlation analysis, a density plot was implemented to compare the 

distribution curves of the temperatures across the features in the dataset. Figure 4.2 shows the 

density plots for internal and external temperature measurements. 
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Figure 4.2  

Density Plots for Internal and External Temperature Measurements 

 

The initial normalization shows that the internal and external temperatures share a similar 

distribution when transformed into a logarithmic scale. This outcome confirms our initial 

assumption that external temperature is highly correlated with the internal temperature 

measures for each test. 

Additionally, an autocorrelation analysis of the residuals was conducted to identify the 

critical lag features of the dataset. Autocorrelation applied to the internal temperature describes 

the similarity of historical measures against a time-shifted version of itself. This method can 

help identify hidden patterns in our time data. 

From Figure 4.3, we can see that the first 24 lags of our data could be relevant for predicting 

the behavior of the internal temperature over time. The effect of initial lags is accumulating as 

we move to higher values on the x-axis. In order to avoid overfitting the model a partial 

correlation analysis was conducted to isolate each residual lag's impact. 
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Figure 4.3 

Autocorrelation (ACF) and Partial Correlation Analysis (PACF) 

 

 

By reviewing the autocorrelation analysis for the summer and winter data, we can conclude 

that for the summer packages, considering one lag is enough to capture the historical 

interdependencies of our data with a 95% confidence interval. On the otherhand for the winter 

packages, more time lags seem significant at a 95% confidence level in the data, indicating 

that the winter data has more interrelated lags. 
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Since it has already been confirmed that internal temperature is affected mainly by external 

temperature conditions, and to avoid overfitting, the number of lags will be reduced to one for 

simplicity. 

4.2 Statistical Models 

Autoregression and ARIMA models were used to forecast the internal temperature of the 

summer and winter EPS profiles. We evaluated the models using cross-validation and tuning 

to create a training model that will be used as a benchmark to be compared to other approaches 

that incorporate the external temperature as an exogenous factor. 

Starting with an autoregressive analysis, both univariate and multivariate forecasts were 

evaluated for the summer and winter datasets. Forecast errors were then compared across both 

methodologies. Additionally, external temperature features were included as an extension of 

the model to evaluate its effect on the predicted package internal temperature. The results are 

summarized in Table 4.1 

Table 4.1 

Summary of Autoregression Forecasting Errors 

    Test Set 
Data Model RMSE MAE MAPE 

Summer 

Autoregression, One-step 0.23 0.20 0.02 
Autoregression, Multi-step 0.76 0.66 0.04 
Autoregression, One-Step + External Temperature 0.31 0.22 0.02 
Autoregression, Multi-step + External Temperature 0.81 0.70 0.05 

Winter 

Autoregression, One-step 0.25 0.22 4.4E+12 
Autoregression, Multi-step 1.33 1.09 1.7E+13 
Autoregression, One-Step + External Temperature 3.85 2.70 6.6E+12 
Autoregression, Multi-step + External Temperature 1.17 0.96 6.4E+12 
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Autoregressive multi-step models performed worse in all metrics compared to their one-

step counterparts when using ten k-folds time series cross-validation. The results appear to be 

in line with what other researchers have reported: multi-step models tend to suffer from error 

accumulation problems when the prediction period is long due to the bias and variance from 

previous time steps are propagated into future predictions. We can conclude that a one-step 

approach is sufficient to compare and validate each model’s performance. 

MAPE in the winter models yield values beyond 100% for each test. Considering the 

MAPE formula, the residuals per step are divided by the actual values of the temperatures in 

the container. Since some of the internal package's values are close or equal to zero, the values 

produced approach infinity. Thus, only RMSE and MAE will be considered for the rest of the 

models. 

After building a time series forecast based on autoregressive lags, the external temperature 

data was incorporated as the exogenous variables in the model. The exogenous variables did 

not improve the model’s accuracy significantly, regardless of the number of lags or number of 

future multi-step used. Based on our correlation analysis and empirical knowledge, external 

temperature gradients significantly impact packages’ delivery under different ambient 

conditions. Thus, we conclude that simple autoregressive models in this research only serve as 

benchmark for comparison, not for predicting the internal temperature based on new 

conditions.  

The second classic approach implemented in our datasets was the Autoregressive 

Integrated Moving Average analysis on summer and winter profiles. ARIMA models are time 

series methods that incorporate a linear regression of lags from autoregression (p), an 

integrated part from the differences of raw observations (i), and moving average used to 
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measure the dependency between an observation and residual errors from the moving average 

model applied to lagged observations (q).  

An array of ARIMA models on different hyperparameters and comparing the RMSE values 

across runs helps identify the best configuration for getting the least error for both training and 

test sets.  

Initially the model was tested only considering the linear regression of lags from 

autoregressive (p) to compare the results to the autoregressive model from Table 4.1. It was 

found that an autoregression model ARIMA (3,1,0) returns the best RMSE when 

autocorrelation between residuals is not significant at p-value > 0.05. The ARIMA model now 

can serve as a reference for comparing other complex models. 

Table 4.2  

11 EPS Box Summer -10°C ARIMA Analysis on Multiple Hyperparameters  

  Training Set Test Set Residuals 
Model RMSE MAE MAPE RMSE MAE MAPE p-value 
ARIMA (0, 1, 0) 0.17 0.1 1.04 0.81 0.76 2.7 0 
ARIMA (0, 2, 0) 0.15 0.09 0.92 0.7 0.64 2.29 0.036 
ARIMA (1, 1, 0) 0.13 0.09 0.84 0.82 0.77 2.73 0.424 
ARIMA (2, 1, 0) 0.13 0.09 0.86 0.79 0.74 2.61 0.323 
ARIMA (3, 1, 0) 0.13 0.09 0.85 0.73 0.67 2.4 0.512 
ARIMA (4, 1, 0) 0.13 0.09 0.85 0.74 0.69 2.46 0.710 
ARIMA (2, 2, 0) 0.15 0.09 0.9 1.35 1.28 4.51 0.027 
ARIMA (3, 1, 0) 0.13 0.09 0.85 0.73 0.67 2.4 0.512 
ARIMA (3, 2, 0) 0.14 0.09 0.91 1.31 1.24 4.36 0.263 
ARIMA (4, 1, 0) 0.13 0.09 0.85 0.74 0.69 2.46 0.710 
ARIMA (4, 2, 0) 0.14 0.09 0.89 1.34 1.26 4.45 0.264 
ARIMA (1, 2, 1) 0.13 0.08 0.8 1 0.7 2.41 0.545 
ARIMA (2, 2, 1) 0.13 0.08 0.81 1.2 0.87 2.99 0.546 
ARIMA (3, 2, 1) 0.13 0.08 0.79 1.4 1.05 3.62 0.918 
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The same analysis was applied to ARIMA models including average component q as a 

feature to improve the forecast model.  In this case, ARIMA (1,2,1) got the best results and its 

predictors AR1 and MA1 were statistically significant with p-value > 0.05. Nonetheless, 

compared to ARIMA (1,1,0), ARIMA (1,2,1) performed worse in out-of-sample RMSE, 

getting a value of 1 °C, almost 30% higher. Thus, a simple ARIMA model (1,1,0) will be 

enough to benchmark the rest of the ML forecast models. 

4.3 Machine Learning 

As previously applied, machine learning algorithms were used to learn from both the 

internal and external temperature of the payload across time. One of the main benefits of using 

these approaches is that these models can identify non-linear patterns of data for new 

predictions. The five different machine learning approaches utilized in this project are the 

following: K-Nearest Neighbors, Support Vector Machines, Random Forest, Quantile 

Regression, and LSTM Neural Network. Each model’s hyperparameters were tuned using a 

Grid search technique, aiming to set an optimal configuration for the testing set. The summary 

of these methods is shown in Table 4.3. 
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Table 4.3 

Comparison of Performance Metrics of the Machine Learning Models  

    Test Set 
Data Model RMSE MAE 

Summer 

K-Nearest Neighbors 1.72 1.52 
Support Vector Regression 0.45 0.43 
Random Forests 2.15 2.01 
Quantile Regression 0.45 0.57 
Long Short-Term Memory Neural Network 0.86 0.82 

Winter 

K-Nearest Neighbors 0.84 0.76 
Support Vector Regression 0.41 0.33 
Random Forests 1.19 1.09 
Quantile Regression 0.32 0.47 
Long Short-Term Memory Neural Network 2.46 2.34 

 

From the machine learning methods used, Supported Vector Machines and Quantile 

Regression showed the best performance on the test dataset from the summer and winter 

profiles. As expected, K-NN performance is worse, as this methodology struggles with 

historical data containing trends.  Lastly, the Random Forest and LSTM Neural Network 

approach gives the worst performance in both profiles.  

4.4 Model Comparison 

From the previous analysis we can conclude that many methods can be used to forecast 

temperature time series data with varying levels of accuracy. We compared several models, 

highlighted in Figure 2.2. 

The results demonstrated in Table 4.1 from Section 4.2 indicate that one-step 

autoregression performs better than multi-step for both the summer and winter profiles. In 

addition, the external temperature did not lead to a better model; moreover, it slightly increased 
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the error metrics in the summer models and changing them dramatically in the winter models. 

This can be explained by the fact that the lag feature has a high impact and the fact that not 

enough variability is present in the dataset. From these results we can confirm a one-step auto 

regression model without external factors is the best approach. From an implementation point 

of view, this means that the simpler modeling approach the better for the purpose of 

benchmarking our models. 

In addition, the machine learning models used did not perform well due to insufficient data 

points to accurately predict the behavior of the packaging solution. In Section 4.3, Table 4.3 

includes a comparison of the forecast errors on the test set. These models usually perform better 

with large datasets, especially the nonlinear algorithms. Machine learning models do not 

perform well at predicting data far ahead in the future, usually performing better at predicting 

values earlier in the time series. However, an exception was found in quantile regression, for 

the following: 

1- Quantile regression’s main objective is to optimize the loss function. In the model, the 

RMSE was selected as the error metric. 

2- The inner temperature lag and external temperature coefficients of the regression are 

bound by the optimization constraints, allowing a non-linear assessment of the impact 

of external conditions for the package. 

3- A set of regression models for each step was created instead of one regression for the 

entire horizon. Each external temperature step change leads to a new regression model 

with its own set of regression coefficients.  

For each activity in the delivery of the package across the sponsor company’s supply chain, 

it can be observed from Figure 4.1 that there is a significant step-change in the external 
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temperature conditions impacting the internal temperature, either as cooling or a heating 

process. Therefore, six processes for cooling and heating were identified for splitting the data 

into smaller subsets, each with its own regression model. Table 4.4 revisits the UPS 

environment temperature profile conditions for winter and summer with each temperature 

process considered. 

Table 4.4 

UPS Subprocesses and Ambient Temperature Conditions for Winter and Summer 

Step Mode of 
Transport 

Total Time 
(hours) 

Winter 
(°C) 

Winter 
Process 

Summer 
(°C) 

Summer 
Process 

Stage in DC Storage 9.5 22 1 22 1 
Pick up at DC to Local Hub Truck 0.5 10 2 35 2 

At Local Hub Storage 2.5 5 2 30 3 
From Local Hub to Sort Hub Truck 5.0 5 2 28 4 

At Sort Hub Storage 1.5 5 2 28 4 
Stage on Tarmac Storage 0.25 0 2 28 4 

In transit to Airport Gateway Aircraft 2.75 5 2 28 4 
At Airport Gateway Storage 1.25 0 3 28 4 

In transit to local UPS facility Truck 0.75 -5 4 28 4 
At destination Storage 1.25 5 5 30 5 
With Courier Truck 2.25 0 6 30 5 
With Courier Truck 3 0 6 35 6 

 

Moreover, as time progresses for each step change, the internal temperature becomes 

asymptotically closer to the external temperature. Thus, each temperature process was further 

divided into two sub-steps to better capture the non-linearity of each cooling and heating 

process.  

For the winter dataset, it was assumed that the effect of phase change of the gel packs is 

nonexistent considering the initial preconditioning of the gel packs at 5°C, which is above their 
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melting point. Furthermore, since all packages were tested inside a controlled temperature 

chamber, we can infer that only the external temperature influences the internal temperature of 

the vials inside the package. Applying these assumptions to the quantile regression allows us 

to generalize the regression coefficients to be the same across all the model subsets. Figure 4.4 

shows the predicted values of the entire EPS 11Winter Box dataset. 

Figure 4.4  

Quantile Regression Model Predictions on EPS 11 Winter Box Dataset  

 

Coefficients obtained for the winter quantile regression were 0.0765 for the initial 

subprocess and 0.01525 for the second portion of the subprocess. From Equation (3.10), 

substituting the coefficients, we get: 

𝑦&(-,+,, = (1 − 0.0765) ∗ 	𝑦&(-'",+,, + 0.0765 ∗ 𝑋&(-,+ 																																															(4.1) 

𝑦&(-,+,, = (1 − 0.0152) ∗ 	𝑦&(-'",+,, + 0.0152 ∗ 𝑋&(-,+ 																																																(4.2)	 
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On the contrary, the effect of phase change of the gel packs is remarkably prevalent during 

the initial 26 hours for the summer package. The latent heat of fusion of the melting gel packs 

is present, having an increased capacity to absorb heat that does not change the temperature of 

the material. Furthermore, considering the initial preconditioning of the gel packs at -3°C and 

-10°C, respectively, the gel packs used in the laboratory testing are below their melting point, 

explaining the internal chamber's additional capacity to resist temperature changes. Therefore, 

compared to the winter quantile regression, the data must be partitioned into two main sections, 

first the model with the latent heat of fusion, and a second regression model only considering 

the external temperature factor. Figure 4.4 shows the predicted values of the entire EPS 11 

Summer Box dataset. 

Figure 4.5  

Quantile Regression Model Predictions on EPS 11 Summer Box Dataset  
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Coefficients obtained for the winter quantile regression were 0.01020 and 0.00189 latent 

heat change process first and second subprocesses respectively, and 0.01804 and 0.01538 for 

the subprocess considering mostly external temperature influence. 

4.5 Testing Models on New External Conditions 

In Section 4.4, we discussed the implementation of classical and machine learning models 

on the winter and summer profiles of the EPS 11 box samples tested in controlled conditions. 

Both ambient temperatures and process times are assumed to be fixed across each step of the 

distribution lane, which follows the International Safe Transit Association (ISTA) lane data 

for ambient temperature profiles. The temperature profiles used by the sponsor company are 

the extreme ISTA temperature profiles across the United States. However, in real situations, 

variability must be considered when assessing the models’ prediction performance. 

Assessing the variability of the ambient temperature at the origin and destination during 

delivery is critical for creating representative temperature profiles. Table 4.4 from Section 4.4 

defines a typical product delivery from the sponsor company based on extreme temperature 

conditions. As the models developed in this research give predictions based on the changes in 

temperature across time, an understanding of the ambient temperature variability is relevant to 

evaluate our model’s performance under new conditions.  

The temperature variability used in this section is extracted from the ISTA Lane Data Study 

for Pharmaceutical Cold Chain Strategies. In their database, information about daily averages, 

maximum, and minimum temperatures are published for expedited parcel shipping across the 

United States. To simplify the analysis, the variability of ambient temperatures is taken from 

the 72-hour average temperature range values, assuming a normal distribution of temperatures 
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across all lanes. Table 4.5 summarizes the estimated statistics for the normal distribution 

profiles for summer and winter. 

Table 4.5 

Normal Distributions for Summer and Winter 72-hour Averages and Extremes  

 

Summer 
Average 
Lanes 

Summer 
Extreme 
Lanes 

Winter 
Average 
Lanes 

Winter 
Extreme 
Lanes 

Maximum Average Temperature 30.7 35.9 15.0 21.0 
Minimum Average Temperature 24.1 24.1 -2.5 -6.0 

Mean Average Temperature 27.4 30.0 6.3 7.5 
Standard Deviation 1.3 2.3 3.5 5.3 

Coefficient of Variation 4.8% 7.8% 55.2% 71.0% 
95% Confidence Interval, Lower bound 24.8 25.4 -0.5 -2.9 
95% Confidence Interval, Upper bound 30.0 34.6 13.0 17.9 

 

Figure 4.6 shows the normal distribution of daily average values for all the locations for 

summer’s highest temperatures and winter’s lowest temperatures. Given the high variability of 

the lanes studied, a profile of extreme temperature locations is added for comparison to the 

average normal curve.  
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Figure 4.6 

Normal Distribution of Daily Average Temperatures for Summer and Winter Profiles across 

the US 

 

A further calculation of the confidence intervals for our distribution profiles helps to define 

a framework of potential scenarios to analyze our models. The final estimations for the analysis 

of confidence interval at 95 percent of significance show that ambient temperature variability 

is bound within a range of 24.8°C to 34.6°C and -6°C to 21°C for summer and winter profiles, 

respectively. 

In addition to the variability of ambient temperature conditions for each profile, the impact 

of variability in lead times for each process was evaluated, as this variability can affect the 

predicted temperature of the payload. Hence, a simple approach is proposed by assuming each 

step follows a normal distribution with a coefficient of variance of 15%. The results of the 

confidence intervals for each step are summarized in Table 4.6. 
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Table 4.6 

Normal Distributions for Summer and Winter Lead Times per Process Step 

Step Mode of 
Transport Average 

Time 
Standard 

Deviation* 

95% 
Confidence 

Interval, 
Min 

95% 
Confidence 

Interval, 
Max 

(hours) (hours) (hours) (hours) 
Stage in DC Storage 9.50 1.43 6.71 12.29 

Pick up at DC to Local Hub Truck 0.50 0.08 0.35 0.65 
At Local Hub Storage 2.50 0.38 1.77 3.23 

From Local Hub to Sort Hub Truck 5.00 0.75 3.53 6.47 
At Sort Hub Storage 1.50 0.23 1.06 1.94 

Stage on Tarmac Storage 0.25 0.04 0.18 0.32 
In transit to Airport Gateway Aircraft 2.75 0.41 1.94 3.56 

At Airport Gateway Storage 1.25 0.19 0.88 1.62 
In transit to local UPS facility Truck 0.75 0.11 0.53 0.97 

At destination Storage 1.25 0.19 0.88 1.62 
With Courier Truck 2.25 0.34 1.59 2.91 
With Courier Truck 3.00 0.45 2.12 3.88 

*Assuming a Coefficient of Variation of 15% Total 30.50 4.58 21.53 39.47 
 

Combining the variability of ambient temperatures presented in Table 4.5 with the 

distribution of lead times per step proposed in Table 4.6 allows the model to capture how the 

uncertainty of external temperatures impacts the internal product temperature as it is delivered 

through the sponsor’s typical supply chain. For instance, Figure 4.7 shows the impact of five 

simulated ambient temperature scenarios for the Winter Season on the inner package 

temperature, with variable temperature and lead times using the Quantile Regression model.  
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Figure 4.7 

Internal Temperature Prediction for EPS 11 Winter Box on Simulated Profiles  

 

As observed in the simulated runs, the variability of temperature and lead times 

dramatically impacts the predicted inner temperature on the long term. For instance, the 

payload in the five simulations evaluated reached the minimum threshold of 0°C within 26.1 

to 37.2 hours, compared to the initial 38 hours in our sample laboratory box dataset. 

Furthermore, simulations of extreme lower temperatures and extended step lead times shows 

that the Box decreases the ability to safely deliver the product within the required temperatures 

for the analyzed horizon. Thus, understanding the ambient conditions at each location is vital 

to assess the exposure risk of the product vials in the packaging solution.  

The proposed forecasting models in this section provide the sponsor company a framework 

for assessing future EPS 11 Boxes deliveries across their Supply Chain, considering the 
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accuracy. However, from the methodologies implemented in this research, Quantile 

Regression is the only successful model that predicts the inner temperature of the payload 

given new ambient conditions. Despite the poor performance of the machine learning models 

tested under new ambient temperatures studied in this research, the models have the potential 

to increase their forecast performance as more laboratory testing datasets with different 

temperature profiles become available. 
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5. DISCUSSION 

In this project we implemented multiple models, from classical to machine learning, to help 

the sponsor company develop predictive capabilities for their temperature sensitive products 

delivered in passive control shipped solutions for their last mile delivery. We analyzed the 

patterns of three configurations for the EPS 11 Box that were tested in controlled temperature 

chambers, based on extreme conditions defined for the summer and winter seasons. In this 

section, we summarize the business insights derived from our results, management 

recommendations for the implementation of the models developed in this research, and lastly 

the limitations and challenges of the study. 

5.1 Insights and Management Recommendations 

This research shows that the inner temperature of a payload can be modeled as a function 

of the external ambient temperature conditions. The data needed to make predictions with high 

accuracy can significantly vary depending on the forecasting technique selected. The general 

rule of thumb is that the availability of more useful and relevant data translates into better 

forecasting. Increasing the amount of data for training the models decreases the probability of 

overfitting the models. It also allows the trained model to extract insights into the features 

interrelations provided. However, selection of the models must also consider the practicality 

and interpretability of its coefficients, and business problem context. For example, if more data 

samples were available and were input into our Artificial Neural Network until the model has 

the lowest RMSE, it does not necessarily imply that the sponsor company should replace 

existing models and use ANN model for all their predictions. In the case of LSTM-NN, deep 

learning models are known for being difficult to interpret and require multiple iterations to 

reach a satisfactory result. Considering this high resource requirement, LSTM-NN might not 
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be responsive enough for the volume of daily payloads. Hence, making this decision in the 

business environment depends on how frequently temperature curves are being measured, the 

response time needed to test a new solution, and ease of implementation. 

The applied models in this report can be further improved by identifying the frequency of 

failed deliveries per lane from the sponsor company’s historical ERP data. This information 

will help identify the ambient temperatures and conditions that took the payload out of bounds. 

From these failed deliveries, a frequency analysis of failures per lane can help tune the models 

in line with the temperature bounds for the product. 

Given that the sponsor company has operations worldwide, the insights and learnings from 

the models developed with operation data in the United States can be extrapolated to any 

country where the sponsor company has cold chain operations utilizing passive temperature-

control solutions. Additionally, the models are product agnostic, as long as the shipped product 

is of a similar amount, the same package insulation material, and similar ambient temperature 

ranges. The sponsor company could better monitor their operations, focusing on potential 

delivery outliers and failed shipments, and potentially improve productivity by focusing on the 

vials likely to fail by documenting and communicating their findings to their peers globally. 

The models provided could also be used on any perishable product sensitive to external 

ambient conditions, not implicitly related to the pharma industry. As the company portfolio 

increases, the demand for using predictive models for their payloads will increase.  

Using these models to reconsider how passive temperature-control packaging works in 

tandem with active temperature-control infrastructure can lead to more efficient and 

sustainable use of resources. Reduction of the use of passive packaging solutions, which are 
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often single use, would help the sponsor company reach its sustainability goals. If the sponsor 

company takes over the delivery for example, buffer zones could be put at different stages in 

the supply chain, leveraging the power of using both active and passive temperature-control 

throughout the supply chain. In addition, If the sponsor company decides to take transportation 

and delivery inhouse, the company will have more control on the temperature conditions the 

product is subject to. 

Lastly, developing a framework forecasting temperature can enhance predictive practices 

for the sponsor company. Equivalent examples include continuous improvement programs in 

many facilities or how predictive maintenance works in manufacturing sites. Establishing a 

recurrent program that monitors future package deliveries based on existing demand could be 

highly valuable to the sponsor company. This gives visibility and transparency to all 

departments involved in the payload deliveries. In addition, it may help to raise when potential 

disruptions are present in our projected deliveries and take a course of action, that could be 

increasing the number of gels, adding a thermal blanket, changing the material insulator, and 

more. Predictive methods used in this study could highly enhance inventory management 

policies which would positively affect the sponsor company’s working capital management 

leading to more efficient operation and freeing up resources for research and design: the 

primary driver of growth. 

Based on the results from Chapter 4, and building on the discussion of the models, our 

recommendations are as follows: 

1. For the “EPS 11” box, the differences between the summer gel pack preconditioning 

temperatures are minor. Based on our modeling and results, preconditioning the gel 

packs at -3°C and -10°C does not significantly affect behavior. The sponsor company 
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should consider the extra costs accrued by preconditioning gels at -10°C instead of -

3°C. Preconditioning the gel packs closer to -3°C could lead the sponsor company to 

significant cost savings.  

2. The summer and winter profiles need to be considered and modeled separately due to 

the heat capacity and phase change of the gels under the different ambient temperatures 

for both profiles. The sponsor company has been aiming to unify the solutions in an 

effort to reduce complexity. The models and data confirm that this is not a viable option 

for this case. 

3. The models provided by this research are a low-cost initial testing tool to prescreen 

packaging solutions. As the sponsor company always does prequalification testing for 

its shipping solutions, a less resource-intensive way to screen their solutions would be 

to use these models as a powerful tool to reduce the number of lab tests conducted, 

saving costs and time.  

4. The sponsor company could benefit from establishing a process that automates the 

calculation of the temperature predictions from our model coefficients based on a 

known destination ambient temperature. This system could extract future weather 

conditions with an API connection and simulate runs based on these profiles. In this 

manner, quality and supply chain teams could assess if the package conditions for the 

product selected will arrive at the destination. 

5.2 Limitations 

 This section will discuss the limitations faced by this research. This research has only 

considered ambient temperature and no other meteorological factors. Considering the 

meteorological factors and due to the nature of the prequalification testing and the design of 
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the testing chamber, we do not have data on how the different ambient weather conditions 

affect the internal temperature of the payload. The prequalification testing is done in isolated 

chambers in which the only controlled variable is temperature. In the real world, many factors 

are at play, including but not limited to: 

• Time of day and solar radiation. In many delivery locations and especially at 

touchpoints, the shipping boxes are exposed to a level of direct sunlight. The 

amount of solar radiation is always present during the daylight hours but not at 

night for example. Situations where cloud cover is abundant would have different 

heat transfer mechanisms to situations where direct sunlight is hitting the shipping 

boxes. This affects the shipping container through radiation heat transfer, an 

increase in the proportion of radiation heat transfer would lead to difference in the 

temperature behavior, more sunlight leads to more heat being absorbed by the 

shipping solution. 

• Humidity. The United States has many different climates ranging from arid, dry 

climates to humid, tropical ones. This research was unable to consider these effects 

and incorporate them into our analysis. Increasing relative humidity affects the heat 

transfer process by decreasing the heat transferred. This is due to lower air thermal 

conductivity with the higher proportion of humidity. 

• Wind speed. Increasing wind speeds increases the heat transfer rates when the 

boxes are exposed to air currents. Stronger air currents lead to an increase in heat 

transferred by convection.  

In addition, variations of solution setups used by the sponsor company were not included 

in the prequalification testing data. Different boxes, insulation types, and number of gel packs 
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all affect the behavior of the passive cooling solution. These factors could not be accounted for 

in the models provided, even though they have considerable implications on heat transfer to 

the payload. This research is unable to deliver on the following points: 

1) Due to having only three configurations of gel conditioning for one container, we were 

unable to create a model that predicts the success of the container due to changes in its 

components and estimate its performance against various ambient temperatures.  

2) We are unable to suggest optimal configurations for the containers due to not having 

data on real weather conditions, actual behavior during shipping, and considering that data on 

types of boxes, gel packs, and insulators for different shipping solutions is unavailable. Feeding 

our models with data on the configuration of the shipment solutions and the cost of the 

component parts could lead to a prescriptive optimization model that would help the sponsor 

company reduce costs and better serve their customers. 
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6. CONCLUSION 

Through this project, we looked at the passive cooling solutions used by the sponsor 

company. We assessed the prequalification testing data and the sponsor company’s supply 

chain setup. The fact that the only variables available in the testing data were the ambient and 

internal temperatures posed a challenge to deliver a predictive model to forecast the internal 

temperature changes. 

The key aim for this project was to enable the sponsor company to evaluate the 

performance of their passive containers along the supply chain and whether the internal 

temperature stays within the required bounds during transit to the end customer through a 

predictive model. Through this research, two types of approaches were used to model the 

behavior of the “EPS 11” box’s shipping configuration: classical methods and machine 

learning. The output of the models was then compared and discussed. Section 6.1 includes 

recommendations for future research. 

To summarize, of the original deliverables, we were able to deliver on the following points: 

1) Initial testing models for the sample case data have been created to predict the inner 

container temperature along a typical representation of the company’s supply chain. 

2) A validated model that predicts the likelihood of solution success against different 

ambient temperature profiles was also created. 

3) Recommendations were given in Section 5.1 based on the research findings, including 

preconditioning the summer gel packs closer to -3°C, using these models to prescreen solutions 

and lanes, and separate consideration of the summer and winter profiles. 



73 
 

6.1 Future Research 

Reflecting on our research, we see many promising avenues to build on this research and 

take this work further. Considering the importance of the temperature-sensitive logistics field 

and the limitations of this project, many further opportunities and promising ventures exist. 

The research has been focused on the “EPS 11” box, as the sponsor company uses several 

boxes to package their goods for shipping. Though the sponsor company is increasing its use 

of this box, others are also still in use, providing other dimension options and characteristics. 

Future research into these solutions would provide the sponsor company a chance to reduce 

the complexity of their solution catalogue. 

Research into the effects of the different types of insulation on the final payload would 

also be valuable. Insulation is the main protector of the payload shielding it from most of the 

ambient temperature conditions. Research into which insulators provide better protection and 

how that protection varies between different weather conditions would prove valuable to the 

entire perishable supply chain market, not just pharmaceuticals. 

In addition, the internal configuration and setup of the passive packaging solutions play 

an important role in the behavior of the package as a whole. Further research could study the 

effects of the different types of gel, the amount in each package, and their positioning within 

the physical space would not only benefit the sponsor company for its specific problem but 

all industries working with active cooling solutions.   

Further study can be done with a focus on the setup of the supply chain from a network 

design standpoint. Further research focused on this topic could consider the number of stops, 

the length of travel between points, and any idle times.  This would be particularly beneficial 
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to the sponsor company as their courier offers lower prices for off-peak package pickup times, 

which would lead to a more cost-effective approach. UPS, for example, has pick-up slots with 

lower prices for specific times throughout the day. Changing the schedule could lead to a 

longer delivery time and necessitate that the package withstands more exposure to ambient 

temperature conditions. Though the sponsor company always does prequalification testing for 

the solutions before making changes, accurately predicting the success of different scenarios 

is now possible without prequalification testing.  

Only ambient temperature was considered for this study. More comprehensive research 

could consider atmospheric conditions other than temperature, e.g., humidity, solar radiation, 

and windchill. Since a considerable amount of time is spent at or near air terminals, 

multivariate meteorological data from airports could be used. This data is usually of high 

quality due to the meteorological monitoring systems present in all airports. This data could 

be considered with more complex machine learning or neural network techniques that preform 

best with large datasets.  

This is increasing in importance as more dramatic weather patterns are brought on by the 

effects of climate change. 

This project has helped the sponsor in its objective of delivering lifesaving, temperature-

sensitive pharmaceuticals to patients with no deterioration in quality, while complying with 

quality control regulations, and in a cost-effective manner. Modeling the temperature of goods 

in the supply chain is of value to pharmaceutical companies and more broadly, any other 

actors with temperature-controlled supply chains.  
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Humanitarian actors also depend heavily on passive packaging to deliver temperature 

sensitive medications vaccines to vulnerable communities. To support humanitarian efforts, 

this approach can be applied to predict the success of temperature-controlled deliveries to 

remote areas or when active cold chain infrastructure does not exist.  
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