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Abstract

Force-velocity profiles are a well-established approach to generating key parameters
of an athlete’s overall fitness profile. They are currently utilized by NFL teams for
their players. However, athletes run the risk of injury while testing to create these
profiles since they must sprint with a weight attached to them at max speed. As
such, teams are not utilizing these profiles as well as they could as they prefer not to
jeopardize their athletes.

In this paper, we present a novel approach to generating force-velocity profiling
inspired by former work in the MIT Sports Lab to create these profiles directly from
tracking data generated by wearable technology sensors. The techniques presented
in this paper allow NFL teams to create force-velocity profiles over any time frame
of tracking data they have available and allow them to better assess, train, and
rehabilitate their players.
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Title: Neil and Jane Pappalardo Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Background

Professional sports has always been a field where small advantages can mean the

difference between winning and losing. The legendary Vince Lombardi once said that

“Football is a game of inches and inches make the champion”, and nowhere is that

more true than in the modern data-driven era of professional sports. Teams have

whole data analytics teams developing new techniques in an attempt to get a leg up

on their opponents.

Techniques to get the better of your opponent tend to fall into two main categories:

analyzing the other team’s tendencies/players and finding strengths/weaknesses in

your own team. One technique that has come into vogue in recent years is the

concept of a force-velocity (F-v) profile. These curves present teams with three key

metrics that can help a trainer or a coach understand how an athlete may perform

on the field: maximum theoretical force output, maximum theoretical velocity, and

maximum theoretical power output. They are plotted using curves similar to figure

1-1. It has been empirically established that maximum force output is a decreasing

linear function of velocity [2]. Techniques to get these curves are well established for

sprinting and weightlifting applications[5, 18].
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Figure 1-1: Example of a model force-velocity profile, where maximum theoretical
force is the y-intercept and maximum velocity is the x-intercept.

1.2 Why Football?

Techniques to generate these force-velocity profiles are easy to implement for sprinters

and weightlifters due to the maximum exertion requirements in both of those sports.

When sprinting, you are continually accelerating until you reach your maximum ve-

locity so it is simple to calculate this profile by tracking an athlete’s speed at various

points in the run and fitting a line.

In football, it becomes more complicated. During a football play, the different

responsibilities of different position groups and the contact nature of the sport mean

that a player may not reach their peak output in every play. Additionally, they may

not accelerate in the same way that a sprinter might at the beginning of a play. This

makes it more difficult to generate force-velocity profiles from natural football actions.

14



Due to this, most NFL teams generate these profiles by having their athletes run

a sprinting test to generate a force-velocity profile. These are difficult to get done

consistently and add an increased risk of injury to athletes.

1.3 Contributions

Due to the risks discussed above, National Football League (NFL) teams do not

test for force-velocity profiles typically during the season unless a player is injured.

Force-velocity profiles are still useful to have, however, so this paper presents a novel

technique to generate force-velocity profiles directly from tracking data. The benefits

of this technique are evident as it utilizes data that teams already track for their

players in both practice and games. We leverage this data in several ways to come

up with key insights about each player that can be used by NFL and college teams

to further assess their players for potential.

1.4 Outline

Chapter 2 discusses the related work that contributed to the inspiration and develop-

ment of this paper and presents the current state of generating force-velocity profiles

in the NFL. Chapter 3 describes the techniques used to generate force and velocity

data directly from NFL tracking data as well as a brief background on football and

the dataset we are using. Chapter 4 details the novel approach taken to generate

force-velocity profiles directly from tracking data as well as a kernel density estima-

tion approach to creating a load analysis estimate for athletes. Chapter 5 names

several applications to professional sports and some of the benefits of our approach

before chapter 6 evaluates the accuracy of our model in the context of different posi-

tion groups. Chapter 7 concludes with the key insights of our model as well as how

future work could expand upon the work presented within this paper.
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Chapter 2

Related Work

This chapter breaks down the prior work in the field of utilizing force-velocity profiles

for improving athlete performance. There has been extensive work in this field on

the best way to derive force-velocity profiles as they can inform the training and

rehabilitation of athletes to produce better results.

2.1 Applications to Sprinters

Work on computing the relationship between muscle shortening and lengthening and

a force-velocity profile began in 1938 in Hill’s seminal paper [7]. He theorized that

there was an inverse hyperbolic relationship between force and velocity, which was

later directly measured to be true but only for one muscle. Future work has shown that

the relationship for multi-joint activities is quasi-linear and can thus be reasonably

well fit with a simple linear model [19].

The application of force-velocity profiles to sports began with sprinters since there

is an obvious benefit to improving horizontal force, velocity, and power output: win-

ning more races [13]. The work done by Keller to compute the optimal velocity for

a race laid the groundwork to understand how to develop a race strategy to achieve

this optimal result [9]. Figure 2-1 shows the result he derived for a typical sprinting

race with a clear asymptote for the maximum speed.

There have been a multitude of different ways to calculate the force-velocity profile
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Figure 2-1: Velocity function from the Keller model of sprinting.

of athletes [13, 17], but all methods share one commonality: they require a specific

test and setup to calculate their results. These take the form of various different move-

ments: jumping as high as possible, bench pressing for speed, or sprinting through a

set of velocity sensors [17]. The most common test that involves sprinting involves

setting up an athlete with a known weight attached to them (ideally a small weight).

The athlete then sprints for a set distance and their speed and time between different

points over the run are recorded. Those can be fit using the model from Keller [9]

and the maximum force and velocity can be derived from the test.

This test informs how to train a sprinter and see what sort of strength imbalance

they hold. The optimal profile for the distance that the athlete runs can be computed

and then used to train the athlete. Figure 2-2 shows how a strength imbalance can

look once it has been identified. This athlete is more speed-biased, suggesting that

they could use training in force to reach their optimal profile. Charts like these help

coaches to target athlete training to get better at their event, or sports medicine staff

to help get an injured athlete back to their previous baseline.

18



Figure 2-2: Example of how a strength imbalance can be identified using a force-
velocity profile [19].

2.2 Current Use in the NFL

Force-velocity profiles are currently used by many NFL teams to help train and rehab

their athletes. However, there are a few issues with football specifically that make

it more difficult to generate these profiles than for sprinters. NFL athletes need

a different optimal profile than sprinters since they are not trying to win a race.

Additionally, each position played is significantly different from one another with no

clear indication of what an optimal profile would even look like. As such, force-velocity

profiles are typically used in the NFL for comparison purposes and to rehabilitate

injured athletes. For example, one team I spoke with said they track a player’s

maximum velocity in each practice relative to their theoretical maximum and if it is

a certain percent lower multiple days in a row they know that player needs more rest.

Teams tend to find the profiles useful, but they have difficulties in getting up-to-

date force-velocity profiles for every player. The difficulty here falls on the specific

sprinting test that is typically performed to get the profiles. NFL teams try to limit

the amount of sprinting their players do outside of game time in order to minimize

19



injuries and overuse. Adding another test into the already packed week of an NFL

athlete is something most teams will not risk [14]. As such, teams tend to get a base-

line for all players at the beginning of the season that they use as a "gold standard"

for the rest of the season to compare to. The only time they are typically tested again

during the season is if an athlete is injured and the sports medicine team wants to

test how their recovery is going and if they are ready to return to play. Being able

to get more up-to-date force-velocity profiles would benefit NFL teams as they could

see how their players are doing during the season and potentially identify weak spots

to work on to improve the team.

2.3 Prior Work in MIT Sports Lab

The most significant previous work to this paper is the wonderful thesis by Kevin

Lyons, who worked in the MIT Sports Lab the year prior to me [10]. His thesis

was also focused on finding an automated way to generate force-velocity profiles of

NFL athletes and made several interesting novel advancements in the field. His work

involved taking the tracking data for a player on each play and extracting increasing

and decreasing segments of acceleration for an athlete on a given play and finding

segments over a second in length. With that data he could use the Keller model to

track their velocity and derive the acceleration and force [9].

After extracting the forces and velocities directly from the tracking data, he also

took a percentile-based approach to calculate the upper envelope of a force-velocity

profile. His approach was to go directly from the data to see what the player did

instead of taking the direct linear approach and trying to estimate the theoretical

max force and max velocity of a player. He was able to derive several upper envelope

methods that are improved on throughout this paper. Figure 2-4 shows the results

of his work to produce an upper envelope for a player. Kevin’s work is the direct

inspiration from my thesis, and I was able to heavily iterate and improve upon his

initial findings in the coming chapters.
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Figure 2-3: Extraction of sufficient segments from Kevin’s thesis [10].

Figure 2-4: Final upper envelope for Tom Brady from Kevin’s thesis [10].
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Chapter 3

Calculating Force-Velocity from

Player Tracking Data

Given the merits of using force-velocity plots to rehabilitate and train athletes, pro-

fessional sports teams use force-velocity (F-v) curves regularly in their athletic train-

ing and sports medicine departments. They help the staff to make informed deci-

sions about when athletes are ready to return to full play and monitor their ongoing

progress.

3.1 Motivation to Use Player Tracking Data

The biggest issues teams encounter in utilizing these curves is that the only time

they can update them is when an athlete runs a specific test. The standard test

is to have an athlete attached to a known weight (say 2.5kg) and run 40m as fast

as possible. This technique generates accurate force-velocity curves but has several

major drawbacks. The most significant is the risk of injury during the test. NFL teams

try to minimize the time athletes are spending at maximum exertion as injuries there

occur more frequently and are typically more severe [11]. This is especially concerning

in rehabbing athletes, as they need the test to see how their recovery is progressing,

but doing the test too early risks reaggravation of the injury. Another issue is finding

time for athletes to perform the test. NFL athletes have grueling schedules that have
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them watching film, lifting, practicing, and receiving treatment [14]. Adding time in

the week for another specific test is tough for one player and infeasible at the scale

of all 52 players on an NFL roster. Given these injury risks and scheduling concerns,

I propose a method of calculating a force-velocity profile directly from the tracking

data that is already recorded for every player in practice and games.

3.2 Football Definitions

It is necessary to briefly lay out the different positions in football and describe some of

the difficulties in calculating force-velocity plots for certain positions. Unlike runners,

whose movements are mostly unimpeded except by natural terrain, football players

don’t spend a lot of time at a maximum speed sprint. Figure 3-1 shows how a football

play may begin, with different groups moving around based on the play call after the

snap.

Figure 3-1: Aerial view of a football field, showing where each position group roughly
starts a play [10].

24



Table 3.1 breaks down the general position groups you will see in football, where

the differences between how these groups play would have a noticeable effect on

which regions of their force-velocity curves are regularly accessed. Wide receivers, for

example, spend a lot more time sprinting and changing direction quickly, so may have

higher maximum velocity output on tracking data. Linemen are the most difficult

to calculate since they tend to spend time blocking or trying to get through the

blocks of other linemen. Tracking data provides us with velocity, but true force (e.g.

the resistance from other players) is not measured. The differences in force-velocity

between "skill" positions (QB, RB, WR, TE, DB, LB) is not as significant as the

difference between linemen and skill positions. For example, a linebacker spends a

majority of the beginning of the play reading what the offense is doing, but will still

have to accelerate quickly in an attempt to tackle the ballcarrier or to cover a wide

receiver, so they should still hit their maximum power output over the course of a

season.

Position Abbreviation Side of Ball
Quarter Back QB Offense
Running Back RB/HB Offense
Wide Receiver WR Offense

Offensive Lineman OL Offense
Tight End TE Offense

Defensive Back DB Defense
Linebacker LB Defense

Defensive Lineman QB Defense

Table 3.1: Table of Football Positions.

3.3 Dataset and Limitations

The work in this thesis is derived from a publicly available dataset hosted on Kaggle,

which has positional tracking data for every passing play in the 2018 NFL season [1].

Although the dataset does not contain any running plays, I am confident that the

passing play data contains enough information and time spent at maximum power

output to derive the force-velocity relationship of each athlete. The addition of run
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plays would potentially change the profiles of some players (in particular running

backs), but the general methodology developed can be adapted to account for this

new data once added into the dataset. This dataset also does not include linemen,

but as discussed above linemen are the most difficult to assess with tracking data as

most of their force comes from colliding with others.

Name Count
Games 253
Players 1, 303
Plays 19, 329

Unique Entries 18, 309, 388

Table 3.2: Key metrics from the Kaggle dataset [1].

Table 3.2 shows the size and type of data in this dataset. The dataset was collected

using RFID sensors placed into the should pads of each player during regular-season

games, which were then used to track the positional data of each player. The data

was collected at a rate of 10Hz, giving a significant amount of unique entries for each

player. The dataset contained metrics about each player, giving their name, height,

weight, position, date of birth, college, and a unique identifier. The identifier was

used for the data from each play to record the 𝑥, 𝑦 position of each player, as well as

their speed, acceleration, orientation, and direction. Figure 3-2 shows the orientation

of the axes used to standardize the measurements. One key thing to point out is that

the data is not in SI units but instead in yards, so some preprocessing was required.

3.4 Deriving Acceleration and Velocity from Posi-

tional Data

After running several tests on the acceleration and speed values from the Kaggle

dataset, I concluded that they were not consistent enough to run an analysis on as

they seemed to be overly smoothed. I decided to take the positional data (which

is what was tracked originally in the dataset), and derive the velocity and accelera-

tion using derivatives, where the smoothing is known. To smooth the data I used a
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Figure 3-2: Axes used to describe a player’s location and direction in the Kaggle
dataset [1].

Savitzky-Golay filter [6] with order 2 and window size 5, which were selected through

experimentation. A Savitzky-Golay filter works by taking a window size 𝑤 and cal-

culating a polynomial fit of order 𝑜 on the ⌊𝑤
2
⌋ points to the left and right of a given

point. With the polynomial fit, it smooths the given point by replacing it with the

value of the polynomial at that point then moving to the next point and shifting the

window. This method tends to produce nicely smoothed data where we can adjust

the window size and order as needed.

Figure 3-3: An example of how the Savitzky-Golay filter is calculated with window
size 7 and order 2 [6].
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With our smoothing function decided, the next question was how to calculate the

derivative of this discrete dataset. This was done by fitting cubic splines to the raw

data and taking the derivative in both x and y separately. This allowed me to find the

velocity and acceleration in x and y independently from each other, giving 𝑣𝑥, 𝑣𝑦, 𝑎𝑥,

and 𝑎𝑦. We could have alternatively used the Savitsky-Golay polynomials directly,

which would have given similar results. The algorithm to derive these follows from

the steps of smoothing, fitting a spline, and taking the derivative to produce the final

algorithm:

1. Smooth raw position data using the Savitzky-Golay filter

2. Fit a spline to the smoothed position data

3. Differentiate the spline to find velocities

4. Smooth velocities using the Savitzky-Golay Filter

5. Fit a spline to the smoothed velocities

6. Differentiate the spline to find accelerations

7. Smooth accelerations using the Savitzky-Golay filter.

After applying this process to both the 𝑥 and 𝑦 data, we now have 𝑣𝑥, 𝑣𝑦, 𝑎𝑥, and 𝑎𝑦,

which can be combined to give us our final outputs of velocity and acceleration for

an athlete using:

𝑣 =
√︁
𝑣2𝑥 + 𝑣2𝑦

𝑎 =
√︁
𝑎2𝑥 + 𝑎2𝑦

Now that the velocities and accelerations were calculated, all that remained was to

calculate the force the athlete was exerting to generate the force-velocity profile.

3.5 Calculating Force exerted by an Athlete

To estimate a lower bound on the force an athlete is exerting, the first step is to

generate a free body diagram of the forces on the athlete. Figure 3-4 shows this free
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body diagram and the forces acting on the runner. To compute the force from this,

we must find the net force acting on the athlete.

Figure 3-4: Free body diagram showing the three external forces that determine the
acceleration a runner: ground reaction force (GRF), gravitational force (equivalent
to body weight, BW), and wind resistance [8].

Some key assumptions made were that the force of gravity of the runner would

be cancelled out by the ground reaction force’s y-component, and so the acceleration

calculated in the prior section would be associated with the net force in the x-direction

caused by the ground reaction force from the athlete. In total, the 𝐹 we were looking

for was governed by the equation:

∑︁
F = (𝐺𝑅𝐹𝑥 − 𝐹𝑑𝑟𝑎𝑔)x̂+ (𝐺𝑅𝐹𝑦 −𝑚𝑔)ŷ

where 𝐹𝑑𝑟𝑎𝑔 is the wind resistance on the athlete. Since we assume that the y-

components cancel out, we are now looking to find 𝐺𝑅𝐹𝑥 (which we will refer to

as 𝐹 (𝑡𝑖) from here onwards) since we strictly focus on the x-components and simplify

the equation to:

𝐹 (𝑡𝑖) = 𝑚𝑎(𝑡𝑖) +
1

2
𝜌𝐶𝑑𝐴𝑐𝑣(𝑡𝑖)

2

This includes the formula for calculating drag as well as the acceleration of the athlete,

𝑚𝑎. 𝐶𝑑 is the drag coefficient of a running person, which is on the order of 1 [16].

𝜌 is the density of air, which is 1 kg/𝑚3. 𝑣(𝑡𝑖) and 𝑎(𝑡𝑖) were calculated in the
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prior section, so the only unknown left to estimate is 𝐴𝑐, the cross-sectional area of

the athlete. We estimated the shape of a person to be approximately a cylinder to

calculate 𝐴𝑐.

We started by calculating the weight of a cylinder, which is

𝑤 =
1

4
𝜌ℎ𝜋𝐷2

In this case, 𝜌 is the density of water (103kg/𝑚3), ℎ is the height of the cylin-

der/person, and 𝐷 is the diameter of the cylinder. 𝐷 is what we’re interested in

to find the cross-sectional area of a person, so rearranging for 𝐷 we find:

𝐷 =

√︃
4𝑤

𝜌ℎ𝜋

The cross-sectional area of a cylinder is 𝐴𝑐 = ℎ𝐷, so plugging in the values from

before we get:

𝐴𝑐 = ℎ𝐷 =

√︃
4𝑤ℎ

𝜌𝜋
≈

√︃
𝑤ℎ

𝜌

Plugging all these constants back into the force equation, we get the final equation

to estimate the force:

𝐹 (𝑡𝑖) = 𝑚𝑎(𝑡𝑖) +
1

2

√︃
𝑤ℎ

𝜌
|𝑣(𝑡𝑖)|2

Now that we can calculate both force and velocity, I calculated those for each

of the players and was able to produce force-velocity plots for each athlete in the

dataset. Figure 3-5 shows two examples of these total computed point clouds for two

different players. you can already begin to see some of the differences between even

these two players. For example, you can see that Robert Woods has a higher and

more consistent time spent in the higher velocity section of the graph.

3.6 Cleaning the Data

Since we are taking the second derivative of the tracking data, there will still be some

outliers despite our smoothing functions. We have derived a simple way to remove
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(a) Robert Woods F-v plot (b) Xavier Woods F-v plot

Figure 3-5: Two Examples of computed force-velocity plots.

outliers from the dataset that is consistent for most of the data.

The general flow of the plan is to bound the max values of the data based on

certain constants. We cut off the velocity max at the Olympic world record for the

100m, which comes out to 10.44 m/s, and we cut the force off at 2400N, which is

around a 600-pound slow squat, which we estimate is around the average an NFL

player could perform. This works well since the players are not performing this type

of movement at low velocities in games so there will only be outliers at that force.

We connect these two maxes to form a line and designate any point above the line as

an outlier. Figure 3-6 shows the results of this outlier designation process.

(a) Aaron Rodgers Outliers (b) Aaron Rodgers Cleaned F-v plot

Figure 3-6: Example of computing outliers.
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We then divide by the player’s mass to get a measurement of athlete strength per

kg. This sets up the basic framework of computing force-velocity curves for different

players and enables us to use these curves to analyze players.
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Chapter 4

Force-Velocity Profiling and Kernel

Density Estimation

With the ability to compute clean force-velocity data directly from tracking data,

we can analyze different players using force-velocity profiles (FVPs) and a player’s

distribution in different output ranges using kernel density estimation.

4.1 Force-Velocity Profiling

Force-velocity profiling is an effective way to keep track of different aspects of an

athlete’s training and provides an overview of how well an athlete will perform in

different scenarios. It additionally provides a convenient way to track how well an

injured athlete is progressing in returning to full strength and might be able to track

what muscles an athlete specifically needs to work on to completely rehabilitate.

Figure 4-1 shows how an FVP may change after training specific areas.

This example figure has a hyperbolic relationship between force and velocity, but

the data and more recent literature show a different story. The original paper by Hill

in 1938 suggested this hyperbolic nature due to the heat of shortening and lengthening

muscles, but this was shown to be true only for isolated muscles [7]. More recent

studies have shown that the F-v relationship of multi-joint performance tasks is quasi-

linear and can thus be modeled with a simple linear model given good data [15].

33



Figure 4-1: Effects of performing different types of training on a Force-velocity profile.

4.2 Generating Force-Velocity Profiles

With an understanding of the necessity for generating FVPs, I was able to derive

a consistent way to find the maximal FVP for an athlete. The general approach is

to find an area where the athlete is almost at maximum exertion. From examining

the plots, I saw that the top range of an athlete’s velocity seemed to show the linear

trend we are searching for. This made sense because of the unique aspects of football

at low velocities. As opposed to sprinting, where athletes tend to use a lot of force

at low velocities to accelerate faster, football has a lot of technical work done at low

velocities due to the contact nature of the sport. A defensive player may need to read

what the offense is doing before accelerating to attempt to cover a receiver or tackle

the ball carrier, and wide receivers have to make lots of quick cuts while trying to

avoid defenders. All of this leads to a lack of data in the lower velocities where we

expect some higher forces.

At high velocities, we see a different story. At this point, athletes are typically in

the open field not making contact with other players, and are running as fast as they
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can to get to the end zone. At this level, we see a clear inverse linear relationship

between force and velocity. An example of this lies in figure 4-2, which shows the

area where the linear relationship lies. We can use this to extrapolate the FVP even

without the low-velocity high force points.

(a) F-v plot showing linear section. (b) Zoom in of plot to the left, with a best fit line
plotted.

Figure 4-2: Linear section of F-v plots, zoomed in to show how well a line fits.

The technique to find the best fit line then relies on finding the area where the

data is roughly linear. The best fit I found was to take the data points that were

between 80% and 99% of the max velocity. This was found by testing different values

and calculating the average 𝑟2 values of the resulting lines. Then, the space is split

up evenly to segment the area into 15 different equally spaced sections. A new data

point is then calculated at the 99th percentile for force of all data in that section and

used as a new data point. These points are then used in a linear regression to create

a line that results in the FVP for that player. Figures 4-3 and 4-4 show the process of

this fitting and the final results for a player. Note that 𝐹0 and 𝑉0 are the intercepts

and key metrics in analyzing the FVP of a player. They indicate the upper bounds

of an athlete’s estimated abilities in both force output and velocity. They can be

used to see how an athlete is progressing as well as how close an injured athlete is to

getting back to full performance.
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Figure 4-3: Example splits and fitting to Amari Cooper’s F-v data.

Figure 4-4: Fit line displayed on all of Amari’s data.
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4.3 Kernel Density Estimation

Now that we can calculate the FVP for any given player, there is one more tool for

analysis that is quite useful in determining how a player plays: kernel density esti-

mation. Kernel density estimation (KDE) is a technique to estimate the underlying

probability density function (PDF) of a dataset [4]. with the estimate of the PDF,

you can display confidence bands on a dataset at various levels to see where the data

is concentrated.

Let 𝑋1, ..., 𝑋𝑛 be an independent, identically distributed random sample from an

unknown distribution 𝑃 with a distribution 𝑝. The KDE can be expressed formally

as:

𝑝𝑛(𝑥) =
1

𝑛ℎ𝑑

𝑛∑︁
𝑖=1

𝐾
(︂
𝑥−𝑋𝑖

ℎ

)︂
Where K is a smooth function called the kernel function and ℎ is the smoothing

bandwidth that controls the amount of smoothing. In our KDE we use a gaussian

kernel, represented by:

𝐾(𝑥) =
𝑒𝑥𝑝(−||𝑥||2/2)

𝑣1,𝑑
, 𝑣1,𝑑 =

∫︁
𝑒𝑥𝑝(−||𝑥||2/2)𝑑𝑥

With this same smoothing in each direction applied by the Gaussian, each data point

is smoothed and accumulated to get the final density estimate 𝑝 [4], which we can

then use to draw levels on a graph.

Figure 4-5: Example of a KDE with contour lines drawn over a dataset [4].
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4.4 Kernel Density Estimation for NFL Athletes

In the case of NFL athletes, we must use bivariate kernel density estimation since

we are trying to see force-velocity bands that an athlete spends the most time in. I

applied KDE estimation to the data for each athlete, which helps show the total load

an athlete has accumulated during the season. This can be utilized to perform load

analysis on players throughout a season to prevent overuse.

(a) KDE of Byron Jones (b) KDE of Patrick Mahomes

Figure 4-6: KDE’s of two different NFL players.

Figure 4-6 shows an example of KDE applied to two athletes, with levels 20%,

50%, 80%, 95%, and 99% drawn. We immediately notice a difference between the

two KDEs that is explainable by the difference in position between the two players.

Cornerbacks are typically required to cover fast wide receivers and have to spend a

lot of time at high velocities, so you see the KDE stretch to the right near the upper

bound of their velocity. Patrick Mahomes on the other hand is a quarterback who

spends the start of most passing plays reading the defense and finding a receiver to

pass to. As a result, he spends a lot of time at low velocities during plays, which is

indicated in his KDE.

With both force-velocity profiles and kernel density estimates able to be calculated

directly from tracking data, we can get a complete profile of each athlete in the

dataset. An example final evaluation plot is shown in figure 4-7
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Figure 4-7: Complete composite image of an NFL athlete with intercepts, KDE, and
FVP plotted.
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Chapter 5

Applications to Professional Sports

This chapter presents two distinct applications where the work in this paper could

be used to benefit the training and recovery of NFL athletes. NFL teams already

use force-velocity profiles to inform these two areas, but as discussed earlier require

specific tests that are tough to coordinate and risk injury to the athlete [11]. Given

these concerns, NFL teams could utilize the techniques presented in this paper to

track force-velocity profiles and load analysis directly from the tracking data they

already record on the athletes.

5.1 Sports Medicine

Sports medicine staffs have in recent years have started to use FVPs to more accu-

rately assess whether athletes are fit to return to play. It enables them to better

understand what has changed in an athlete and how they may be compensating and

risking further injury in other muscle groups. The most prevalent example of reinjury

risk is hamstring injuries. Athletes will change their running style without realizing

it or affecting their maximum velocity, and overcompensate to different muscles [11].

Figure 5-1 shows a real example of a soccer player who tested sprinting for an

F-v profile before and after a hamstring strain [12]. As you can see, there is no effect

on the athlete’s maximum velocity, which is something you can see by eye during

on-field play and practice reps, so to the naked eye the athlete may appear to be fully
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Figure 5-1: F-v profile pre and post hamstring injury for an athlete [12].

healed. However, by plotting the force-velocity profile, you can see that the athlete is

most likely compensating using different muscles and is not producing the same level

of force that he was before. This is a good indicator to sports medicine staff that an

athlete either still needs to rehabilitate their injury or needs to be held out of team

activities for longer than they might otherwise.

Utilizing force-velocity profiles could help reduce reinjury rates among athletes,

especially in hamstring injuries which are notoriously high risk for reinjury and are

tough to tell when they have fully healed as the first time an athlete tries to produce

more force than their hamstring can handle they can reinjure their hamstring. They

provide another metric to sports medicine staff of when an athlete is fit to return to

play. Being able to estimate the FVP of a player directly from tracking data would

help this process even more as athletes would not have to run sprints where they risk

reinjury.
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5.2 Load Analysis and Training

Another benefit comes from the kernel density estimation aspect of this player analy-

sis. With the FVP we know a player’s approximate theoretical max velocity and force,

so teams could keep track of how long an athlete is spending doing high-intensity ac-

tivity. NFL teams already track how many "high output yards" a player runs, as well

as how many reps in-game and practice they get. With a kernel density estimate,

they could classify what percentile of an athlete’s output counts as "high output"

and see how much time they spend in that on different practices/games. This would

enable insights on when an athlete needs to rest to recover the ability to spend more

time at high output.

Another benefit here comes from the force-velocity profile of a player. NFL teams

would be able to update each athlete’s profile after every practice/game and be able

to see if an athlete is performing up to the standards that they have previously set.

There are multiple advantages to this approach. One, the athlete doesn’t need to run

a specific test so teams can generate an FVP over any period of time they need to

see how an athlete is performing. Two, the athlete can be compared to themselves

to see if they need rest or if the training regiment the athlete is on is improving the

maximum force or velocity that they wish to improve. Three, it provides numbers

for maximums that can be given to coaches to see how an athlete’s numbers compare

to other members of the team when making starting lineups. Having only a few

numbers/plots for each athlete that encapsulate the athlete’s athletic profile allows

the coach to make informed decisions without being overwhelmed by a lot of data.

These are just two potential applications to professional sports but the techniques

presented in this paper are adaptable to whatever approach a sports team would like

to use in their organization. The hope is for more teams to take this approach as it

provides benefits to player safety as well as the team as a whole.
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Chapter 6

Evaluation and Discussion

This section holds evaluation and sanity checks on the data to make sure that the

force-velocity profiles and kernel density estimates are giving data that is consistent

enough to be used at the highest level of the sport.

6.1 Positional Differences

The most logical place to begin a discussion of the accuracy of this dataset is to

understand the position differences and lineups of different positions in football. Since

the Kaggle dataset [1] has only passing plays in it, there are a few position groups that

should be closely correlated to each other; Defensive backs cover wide receivers on

most plays, and linebackers typically cover running backs on passing plays. Tight ends

and quarterbacks are slightly different from other positions. Tight ends sometimes

block during a play and sometimes go out for passes. As such, they have a different

expected force-velocity profile since their typical weights and heights are different

from other positions. Quarterback is unlike other positions in football since they

stand back during the play and see how it develops. Some quarterbacks tend to run

with the ball more as well if they don’t like what the defense is showing them, while

some tend to stay in the pocket to pass the ball more, so one might expect to see a

lot of variability in quarterback profiles.

Given the different requirements of each position, the average height and weight
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Position Height (Ft, ins) Weight (Lbs)
Quarter Back 6’3.4" 225.0
Running Back 5’10.7" 214.5
Wide Receiver 6’0.4" 200.3

Offensive Lineman 6’4.8" 314.2
Tight End 6’4.5" 254.3

Defensive Back 5’11.7" 200.1
Linebacker 6’2" 244.6

Defensive Lineman 6’3.2" 309.0

Table 6.1: Table of Football Heights/Weights by Position Group [3].

by position group varies greatly in the NFL, and a different FVP is expected for each

group. Table 6.1 shows a breakdown of the different position groups by height and

weight [3]. Note that the position groups mentioned have some similarities in their

height/weight, such as wide receivers and defensive backs being almost identical in

height and weight averages. This understanding of football knowledge and differences

by position groups helps to explain the data aggregation in the rest of this chapter.

Figure 6-1 shows several different force-velocity profiles split by position group and

you can already see some of the differences discussed above in that plot. Philip Rivers

is more of a pocket passer and thus his max velocity is lower than Lamar Jackson, a

more mobile quarterback. You can also see in the KDE that Lamar Jackson spends

a lot more of his time at higher velocities. You can also see that the defensive backs

are similar in profile to each other while running backs spend less time at the high

velocities that the defensive backs do. This makes sense as a lot of passing plays

involving running backs have them either blocking for the quarterback or running

shorter routes.

6.2 Distributions of Force and Velocity Maxes

Looking at individual plots makes it difficult to see the distribution of the data, so

this section presents several different ways to view the data based on two key data

points we can extract from each plot: 𝐹0, the theoretical maximum force of a player,

and 𝑣0, the theoretical maximum velocity of a player. These can be used separately
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(a) Philip Rivers (QB) (b) Lamar Jackson (QB)

(c) Kyle Fuller (DB) (d) Xavier Rhodes (DB)

(e) Todd Gurley (RB) (f) Ezekiel Elliott (RB)

Figure 6-1: Example KDE’s of two different players from several position groups.
From top to bottom: Quarterbacks (QB’s), Defensive Backs (DB’s), Running Backs
(RB’s).
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or together to get a feel for how the data distribution of different players and position

groups is shaped in this dataset.

(a) Maximum force distribution (b) Maximum velocity distribution

Figure 6-2: Maximum force and maximum velocity histograms for the Kaggle dataset.

To start, we can create histograms of 𝐹0 and 𝑣0 for the entire dataset. These

need to be cleaned up a little as there are a few cases where certain linear estimators

are affected by outliers at the top level of a dataset and create lines that are too

horizontal. This was fixed by bounding the values to be positive and below the value

of the max recorded human speed (12.3 m/s by Usain Bolt). Figure 6-2 shows the

histograms for 𝐹0 and 𝑣0. The shapes of each are roughly Gaussian, which is good for

consistency as we would expect a distribution of athletes to have a roughly normal

distribution. The means and standard deviation of each parameter are listed in Table

6.2.

Parameter Mean (𝜇) Std. Dev. (𝜎)
𝐹0 21.31 N/kg 4.01 N/kg
𝑣0 10.31 m/s 0.534 m/s

Table 6.2: Mean and Standard Deviations for 𝐹0 and 𝑣0.

These values seem to be consistent with the maximum force and velocity of players

that we would expect, although the results do tend to be slightly biased towards

speed values. This extra speed result seems to come from estimating at the top level
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of speeds only, but as seen earlier this is the main area where we see the linearity

in the dataset, so without better ways to estimate impact forces between players the

speed bias is acceptable for the data and mostly consistent with example data we

have received from NFL teams.

6.3 Analysis by Position Group

Another area where we can assess whether the data is consistent is by plotting the

maximum force and velocity values for each player and grouping them by position.

A plot of 𝐹0 vs. 𝑣0 split with a color for each position group is shown in figure 6-3.

Figure 6-3: Plot of 𝐹0 vs. 𝑣0 for each player in the dataset, split by position group.

This plot is slightly messy since it shows all the players, but you can see trends

from different position groups starting to form. We can clean up and analyze this plot
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using kernel density estimations we have used before. We split up the analysis for the

KDEs based on the positional differences discussed earlier in this chapter. Namely,

the figures will be split to show 2 position groups if we expect them to be similar

and a singular position group if we expect them to be different from other position

groups. We ran a kernel density estimate of all the players in that position group and

set the level to show to be 50%. The groups we chose are as follows:

• Figure 6-4: WRs vs. DBs

• Figure 6-5: LBs vs. RBs

• Figure 6-6: TEs

• Figure 6-7: QBs

Figure 6-4: WR vs. DB Comparison.
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Figure 6-5: LB vs. RB Comparison.
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Figure 6-6: TE Comparison.
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Figure 6-7: QB Comparison.

We can see some clear trends and similarities between the position groups when

plotted in this way. Here are some key takeaways from each of the plots.

• Figure 6-4: You can see clearly that the WRs and DBs are closely associated

with each other. This is what we expected as in passing plays DBs cover WRs.

Additionally, they are at the top end of both velocity and force, which we would

expect on passing plays since they are involved in the most sprinting on these

plays.

• Figure 6-5: LBs and RBs are also closely associated with each other. They are

both lower than the WRs and DBs, which is most likely due to them being

involved in more contact on each play as LBs need to read the play to see if it

is a pass and then either rush the QB or attempt to cover an RB/WR.
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• Figure 6-6: TEs are similar in terms of force output to LBs and RBs, which we

would expect since they are also blocking on these plays. They however tend

to be slower than both of those other groups, which makes sense since their

average weight is significantly higher than both LBs and RBs

• Figure 6-7: QBs as discussed earlier vary significantly from other positions

and also vary greatly within the group due to pocket passers versus mobile

quarterbacks. Their average is lower in both force and velocity than any other

group due to having to read defenses and make passes on passing plays most

likely and is stretched in both velocity and force due to the variation within the

group, given them the largest area covered for a KDE.

These are the most concrete insights we can take from these plots and the dataset.

Our results seem to be consistent based on the differences between position groups

discussed earlier, which is a good sanity check to say that our method is correctly

seeing the difference between the groups. To further confirm the soundness of the

techniques developed in this paper, a dataset containing more than just passing plays

or the ability to get more low-velocity force data caused by blocking would be required.

Figure 6-8 shows an aggregation of KDE comparisons for all position groups at once.
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Figure 6-8: Aggregated kernel density estimates for each position group, set at a 50%
level for each estimate.
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Chapter 7

Conclusion

The methods developed in this paper serve two main purposes for football teams:

preventing injuries caused by the current testing process for both rehabilitating and

healthy athletes and providing more consistent and up-to-date estimates of force-

velocity profiles of NFL athletes. The risk of injury decreases by not requiring athletes

to run a test where they sprint with a weight attached to them. This is especially

true for athletes returning from injury who are at an increased risk for reinjury when

attempting maximum output activity [11]. NFL teams also tend to not generate

force-velocity profiles for NFL athletes during the season due to this injury risk, so

they instead rely on a baseline preseason profile. Over the course of a season, athletes’

bodies can change significantly, and monitoring the force-velocity profile of a player

can provide insights into when athletes are overloaded and need rest or if a bench

player exceeds their prior performance. The techniques presented in this paper would

allow teams to generate Force-velocity profiles using data from any period of data

they would like so they could get up-to-date data without burdening their athletes,

sports medicine staff, or jeopardizing winning chances with the risk of injury.

As a whole, our methods seem consistent with the Kaggle dataset we are using.

For future work to continue to verify consistency, our techniques should be tested

against a dataset containing more than just passing plays. It should also be tested

over shorter time periods to make sure that the results stay consistent with different

periods, such as one practice. This hasn’t been tested but should be consistent as
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the minimum amount of time for a player to need to perform in our dataset is 5000

datapoints at 10Hz, so at minimum, it has been tested with 8 minutes and 20 seconds

of data.

A few longer-term techniques that could further enhance this method involve

calculating more high force, low-velocity data points. These appear for sprinters

as they are attempting to accelerate as fast as possible, but are difficult to get for

football players as there are different priorities for them throughout a play. Some sort

of force-sensing gloves or method to identify momentum changes when two players

come into contact should enable finding linear data at these high force, low-velocity

points, which should further improve the model.

Overall, we view these opportunities for future work as improving and further

verifying the accuracy of the model. As is, the technique is robust enough to be put

into use on NFL or college football teams that record tracking data of their players

throughout practice and games, and we believe would greatly benefit a team’s ability

to unlock these key metrics about their players.
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