
Estimating the Impact of Automated Umpiring in
Baseball via Monte Carlo Simulation

by

Keithen Shepard

B.S. Electrical Engineering and Computer Science, Massachusetts
Institute of Technology 2021

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 06, 2022

Certified by. .
Anette Peko Hosoi

Neil and Jane Pappalardo Professor, Mechanical Engineering
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Estimating the Impact of Automated Umpiring in Baseball

via Monte Carlo Simulation

by

Keithen Shepard

Submitted to the Department of Electrical Engineering and Computer Science
on May 06, 2022, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

The MLB (Major League Baseball) has made multiple changes to the game of baseball
recently to enhance the viewing experience for fans. One viable idea that has been
tossed around for multiple years has been the implementation of an automated um-
piring system. The MLB has the technology to utilize such a system using Trackman
technology however most MLB teams have expressed opposition to the idea. Using
an automated system would get rid of human mistakes that umpires make due to the
high-speeds of MLB pitches and other challenges.

We present a method to estimate the impact of automated umpiring given MLB
pitch data. We define a novel pipeline for simulating the statistical changes in MLB
games following the correction of umpire mistakes. This pipeline uses historical game
data to guide our estimations and then compares our findings to the baseline real
game statistics. We finally use this pipeline to analyze the changes that an automated
umping model would bring on average to the MLB game.

Thesis Supervisor: Anette Peko Hosoi
Title: Neil and Jane Pappalardo Professor, Mechanical Engineering

3

4

Acknowledgments

I would first like to start out by thanking Peko for all of her support throughout the

whole MEng process. Ever since our first meeting she has been nothing but eager to

help with any questions I’ve had and this work would not have been possible without

her guidance. I also would like to say a big thank you and I love you to my parents,

little brothers, and my whole family who have helped me get to this point. It would

be impossible to put into words how thankful I am for everything you all have done

for me to help me grow as student, athlete, and a person. Thank you to all of my

fellow brothers, both young and old, of Delta Kappa Epsilon, especially the 9 of you

that are a part of my pledge class. Although we may have only gotten 2.5 years living

in the house due to COVID, the memories that I’ve made with you all are some of my

most cherished and I wouldn’t trade them for anything. Deciding to complete this

MEng is due in part to the amazing group of people I was surrounded with at DKE

and their encouragement and I am thankful to have learned from the best. Special

shout out to my girlfriend who has helped me grow and brought so much happiness

into my life since we met my sophomore year. Your never ending support has kept

me focused on the big picture even as some days got very stressful. Thank you as

well to Mr. Dan West, the best chef/boomer around. You have done everything and

more in terms of feeding and helping our DKE class to enjoy our final years of college.

One of my best experiences of MIT has been playing football for MIT’s football team.

A huge thank you to Coach Bubna, Perron, Brennan, and all the other coaches and

players for making one of the hardest places in the world still one of the most fun.

With all of the obligations students have at MIT, I am so grateful to have been able

to compete with the football team day in and day out to try and dominate the world.

As I submit this thesis for consideration, I just want to show appreciation for all those

who have played a part in my life, small or large, as everything I have learned and

experienced has ultimately helped me get to this point. love you Mom, Dad, Cason

and Reid, Roll Tech, and kerothen philoi aei.

5

6

Contents

1 Introduction 13

1.1 Background . 13

1.2 Contributions . 14

1.2.1 Quantifying Umpire Mistakes 14

1.2.2 Extracting Baseball Game State Transition Likelihoods 15

1.2.3 Counterfactual Monte Carlo Simulation Evaluation 15

1.3 Outline . 15

2 Related Work 17

2.1 Baseball Technology . 17

2.2 Umpire Consistency & Shape of the Strike Zone 18

3 Classifying Umpire Mistakes from MLB Pitching Data 19

3.1 Baseball Background . 19

3.2 MLB Pitching Dataset Description 20

3.3 Mistake Classification . 22

4 Extracting Baseball Game State Transition Matrices 29

4.1 Game State Representation . 29

4.2 Calculating State Transition Matrices 31

4.2.1 State-State Transitions . 32

4.2.2 State-Event Transitions . 35

4.2.3 State-Pitch Transitions . 35

7

5 Monte Carlo Counterfactual Simulations 39

5.1 Monte Carlo and Confidence Intervals 39

5.2 Performing Monte Carlo Simulations 41

5.3 Average MLB Game . 44

6 Evaluation 47

6.1 MLB Dataset Comparison . 47

6.2 Home vs. Away . 51

7 Conclusion 59

7.1 Future Work . 59

7.2 Key Insights . 61

A Software Packages 63

8

List of Figures

3-1 An overhead view of a baseball field with the pitchers mound and 4

bases labeled. 21

3-2 Formulation of a strike zone per the MLB’s definition [1] 23

3-3 Visual representation of an example strike zone and a pitch’s tracking

data crossing home plate at location (PlateLocSide, PlateLocHeight). 24

3-4 All charted pitches decided by an umpire in a game between the Phillies

and Mets on 04/17/2019. 27

4-1 Transition probability diagram for the baseball game state [0 1 0 0 1

1] as defined in equation 4.1. 33

4-2 Chord diagram for the 20 most visited game states filtered by innings

1-3 and 0 runners in scoring position. Chord sizes are directly pro-

portional to transition probabilities between states with larger chords

meaning a higher probability. Each node depicts the number of outs,

balls, strikes, and runners on base by filled in circles. 34

4-3 Definition of Matrix 𝑀 . 36

4-4 Definition of Matrix 𝐻𝑓 . 37

4-5 Definition of Matrix 𝐻𝑡 . 37

4-6 Definition of Matrix 𝑇 . 38

5-1 Comparison of number statistical results in a Monte Carlo simulated

game compared to the average MLB game. The black error bars depict

standard deviations. 45

9

5-2 Visualizing effects of different iteration numbers 𝜏 when simulating a

Monte Carlo inning. 46

6-1 Histogram charting number of hits in Monte Carlo fixed games vs.

MLB games. 48

6-2 Histogram charting number of home runs in Monte Carlo fixed games

vs. MLB games. 49

6-3 Histogram charting number of pitches in Monte Carlo fixed games vs.

MLB games. 50

6-4 Analysis of the result mean differences for each statistical category. . 52

6-5 Histogram charting number of Hits in Monte Carlo fixed games vs.

MLB games for Home vs. Away teams. 53

6-6 Histogram charting number of Home Runs in Monte Carlo fixed

games vs. MLB games for Home vs. Away teams. 54

6-7 Histogram charting number of Pitches in Monte Carlo fixed games

vs. MLB games for Home vs. Away teams. 55

6-8 Histogram of differences in Hits between Monte results and actual

results for Home vs. Away teams. 56

6-9 Histogram of differences in Home Runs between Monte results and

actual results for Home vs. Away teams. 57

6-10 Histogram of differences in Pitches between Monte results and actual

results for Home vs. Away teams. 58

10

List of Tables

3.1 Key statistics from the MLB pitches dataset. 21

3.2 Metrics on the classifications of MLB pitches as mistakes. 26

11

12

Chapter 1

Introduction

1.1 Background

Baseball has long been known as "America’s past time" ever since its introduction to

the U.S. in 1846 [5]. As the game progressively grew initially in reach and popularity,

so too did the need for baseball technology to advance in order to meet the needs

of the game. Often, when technology is discussed in the field of sports, the focus

is on creating analyses that will improve the performance of the players such that

the quality of the sport increases. Teams nowadays will spend upwards of millions

of dollars, with a recent source claiming the Dodgers, one of the teams in the MLB,

spends upwards of $20 million dollars annually on baseball technology and research

[22]. Given the broad range of data points that can be extrapolated from a baseball

game, the number of data-based decisions that a team can make is vast. Many

executives of the MLB are currently looking towards data analysis not only as a

means of benefiting the performance of the players but also as a way to identify

changes that will help reinvigorate the fan bases that give meaning to the sport.

Despite such a rich history and long standing fan bases, the MLB is facing a

problem that other professional sports leagues in the U.S. have not had to deal with:

declining viewership. During each regular season, all 30 MLB teams play a total of

162 games each totaling 162·30
2

= 2430 games for one season. Most casual fans do not

have the time to attend the longer games during the week and still make it to work the

13

next morning. The number of fans that attended games in 2007 was approximately 79

million, while attendance only reached about 68 million in 2019, a decrease of almost

14% for in person viewership [2]. On average, as of 2007, the average MLB baseball

game lasts around 2 hours and 50 minutes and hasn’t dropped below this duration

since. In comparison, a typical game lasted 2 hours and 30 minutes in the 1970s [21].

Given these statistics, MLB executives have been looking for different ways to

make games more exciting and appealing to the everyday fan. One such change to

baseball games that has been proposed to make in-person viewing more appealing to

fans is to automate umpiring [4]. The MLB currently has the technology to detect

whether or not every single pitch against a given batter should have been called

a strike. Although this technology exists, the MLB still relies on human umpires

to make these ball-strike decisions throughout games. This thesis work focuses not

on the implementation of these umpire-replacing technologies, but on analyzing the

changes that we might see in MLB games if automated systems were used to call

balls and strikes. Specifically, we will look at how some key statistics that are closely

related to fan engagement change: number of home runs hit, number of balls hit in

play, and number of pitches in game.

1.2 Contributions

Here we introduce some of the key contributions presented in this thesis. These

contributions are generated using MLB pitching data, which we will describe in detail

in section 3.2.

1.2.1 Quantifying Umpire Mistakes

Using the idea of a static strike zone predefined by a batter’s size, we create a function

to evaluate pitches whose outcomes are currently decided by an umpire. By using a

bounding box on the strike zone and the ball’s tracking location as it crosses home

plate, we are able to simulate an automated umpire model that classifies pitches

as correctly or incorrectly called. Classifying these mistakes gives us the ability to

14

counter-factually correct the mistake and simulate future events in the game given

the new starting state. We will also analyze different patterns in umpire mistakes.

1.2.2 Extracting Baseball Game State Transition Likelihoods

In order to accurately model the sequence of events that can occur in a baseball

game, we define a baseball game state with several features that define all the relevant

information about our game at a given point in time. We will discuss the state space

size and how it is conducive to producing results that are statistically significant. We

then perform aggregations over our MLB dataset to generate a probabilistic transition

model, otherwise known as a Markov Chain, for moving from one state to another

state through an event such as a pitch. This Markov Chain is then used as a basis

for game simulation in our Monte Carlo approach.

1.2.3 Counterfactual Monte Carlo Simulation Evaluation

After generating our transition matrices and classifying mistakes, we will describe a

Monte Carlo method for extrapolating through innings in which mistakes occurred

to look at statistical differences between the actual statistics and expected statistics

given an automated umpiring system. We will focus on trends in differences between

statistics on an aggregate level as well as on a per inning level. By comparing means

and standard deviations of expected values we can identify areas where MLB games

could change either for the benefit or harm of viewership as defined previously by

utilizing measured ball trajectories.

1.3 Outline

In Chapter 2, we will discuss work that has been conducted in the area of baseball

technology and umpire strike zone analysis. In Chapter 3, we will define the dataset

we are using for analysis as well as look at a method to classify umpire mistakes

using this dataset. In Chapter 4, we will explain our game state representation and

15

methodology for computing transition matrices both between states and for state-

event pairs. In Chapter 5, we present a novel approach to simulating game statistics

while utilizing our classified mistakes and transition matrices. In Chapter 6, we

present evaluation metrics used to both validate simulation findings and to compare

findings with actual game results. Chapter 7 presents some possible future extensions

to build upon this research as well as discussion about key insights this work provides

regarding what effects implementing an automated umpiring system would have on

the MLB game.

16

Chapter 2

Related Work

This section will discuss the background work done so far in this paper’s area of study.

To the best of our knowledge, there are not any direct studies that look at the cause

and effect relationship of an automated umpiring model on the statistical results of

MLB games, however there are relevant studies that discuss separate pieces of this

thesis pipeline.

2.1 Baseball Technology

With the rise of technology in our everyday lives, so to has technology spread rapidly

in the field of sports. Baseball especially has been further expanding and improving

data collection efforts through technological improvements. Most specifically, these

efforts are being led by Trackman, a baseball tracking system that all professional

teams in the MLB utilize to analyze everything from pitchers to batters [10]. Notably,

in the job space of umpiring, an interesting study by Brian Mills looked into how

the development of tracking and evaluation technology in the MLB actually helped

improve the quality of umpiring in MLB games [19]. This study explains how with the

advancement of QuesTec and later on the Zone Evaluation system (two systems for

monitoring and evaluating pitch calls made by umpires) allowed umpires to improve in

their skill at a rate consistent with the technological improvement. This suggests the

possibility of growth in the game of baseball with the advancement of an automated

17

umpiring system.

2.2 Umpire Consistency & Shape of the Strike Zone

One large simplification we use in this study is that the strike zone is a dynamically

heightened rectangle of static width. This is actually not the case in current MLB

games. Many studies look at the effect that the pitch count or the handedness of the

batter can have on what borderline pitches are called by umpires [16]. One specific

study analyzes potential reasons against using a robot umpire. One reason was that

umpires try and err on the side of not deciding an at bat [12]. This means that if

a batter is ahead in the count, i.e. they have more balls than strikes (3-1 count or

2-0 count), the umpire will call a more relaxed strike zone in order to try and avoid

deciding the at-bat and walking the batter on a called ball. The same goes for when

a batter is behind in the count; the strike zone contracts and the umpire calls more

balls. Other studies examine the effect that different individual umpires have on the

kind of calls made throughout the game and how each of their respective strike zones

differ [11]. Many studies also agree that the strike zone is much better represented by

an oval shape that expands and contracts both horizontally and vertically as opposed

to a rectangle [13]. All of these studies’ findings lie outside the scope of this thesis

as we are concerned not with the technology or models that define how we could

automate the strike zone, but once we have an accurate automated zone what are the

effects on statistics throughout the game.

18

Chapter 3

Classifying Umpire Mistakes from

MLB Pitching Data

Now that we have laid the background for this problem and discussed some of the

previous work in these areas, we will look at the first step in performing our analysis:

classifying pitches as correctly or incorrectly called based on baseball tracking data.

This section will first give some high level background on the game of baseball and

some terminology we will use throughout the rest of the thesis. We will then move

on to discussing the MLB dataset we are using for our analysis before discussing the

criterion for classifying pitches.

3.1 Baseball Background

Before we dive into the dataset we will be using, first we will define a few of the key

baseball terms that will be critical to understanding our work. This is by no means

a comprehensive explanation of the rules or details of baseball and serves only as a

guide for the immediate knowledge needed to understand our algorithms. Some rules

of the game may be oversimplified in order to emphasize aspects of the game that are

essential to understand.

Every baseball game consists of at least 9 innings, each with a top and bottom

half. During each half inning, one team is the batting team and one team is the

19

fielding team. The fielding team has 9 players on the field with one being the pitcher

who tries to throw the baseball so the hitter cannot hit it. The batting team has one

hitter up at a time who stands at home plate and tries to hit the ball before advancing

around all 4 bases to score a run. The team with the most runs scored at the end of

9 innings wins. In the event of a tie, extra innings are played until one team is ahead

after the bottom half of the inning.

Every pitch is called a ball or a strike: a ball is a pitch that crosses home plate

outside of the strike zone while a strike is a pitch that crosses home plate inside of

the strike zone. These decisions on whether or not a pitch is in the strike zone are

determine by an umpire who watches from behind home plate. The umpire makes

a pitch call decision only if the batter does not swing at the ball. For any at bat, 3

strikes means the hitter is out while 4 balls means the hitter may go advance to 1st

base. The number of strikes and ball for each at bat are kept track of in a count, for

example an at bat with 2 balls and 1 strike so far is a 2− 1 count. In order to end a

half inning and get to bat, the fielding team must get 3 outs, either by striking out the

batters, catching a hit ball in the air, or fielding a ball on the ground and throwing

it to a base before the runner arrives. Figure 3-1 shows the layout of a baseball field.

The key statistics we will be keeping track of throughout our analysis are total

number of pitches thrown, home runs hit, and hits. A hit is an event in which a

batter makes contact with the ball and is able to safely make it to one of the bases.

There are different types of hits that we will reference: a single is a hit where the

batter advances to 1st base, on a double the runner advances to 2nd base, on a

triple the runner advances to 3rd base, and on a home run the runner advances all

the way to home plate and scores a run. A home run is any hit by a batter that goes

over the fence of the stadium inside the foul lines.

3.2 MLB Pitching Dataset Description

This thesis work is formulated using a dataset created in April 2020 with MLB pitch-

ing data from the 2017-2020 seasons. Each row of the table corresponds to one pitch

20

Figure 3-1: An overhead view of a baseball field with the pitchers mound and 4 bases
labeled.

in a game during one of these seasons. Table 3.1 displays the number of unique games

and pitches in our dataset.

For each pitch, metadata information about the game is available such as which

teams are playing, which player is pitching or hitting, where runners are on base,

what temperature it was outside, and even what stadium the game is being played

in. Aside from the metadata, each pitch also holds specific tracking data specifying

where and how the ball traveled when it was thrown (and possibly hit). This includes

fields such as velocity, spin rate, vertical location as it crosses home plate, horizontal

Number of Unique Games 7,276
Number of Unique Pitches 2,168,790

Table 3.1: Key statistics from the MLB pitches dataset.

21

location compared to the middle of home plate, exit angle, and many other pieces

of location tracking information. Finally, each row also holds information about the

results after a pitch. This includes information such as whether or not the batter

swung, what the pitch call was, what the resulting count is, how many outs there are,

and whether or not the hitter successfully hit the ball.

While a subset of the data fields in this dataset are publicly available on places

such as Kaggle [4], this dataset has much more detailed and thorough features that

we can use to help define our in game situation before and after any given pitch. For

the sake of umpire mistake classification, we will next define what exactly a strike

zone is and how the home plate tracking data for a pitch can be mapped onto a given

strike zone.

3.3 Mistake Classification

Initially, we will focus on the fields of our dataset we discussed in 3.2 that allow us to

decide whether any given pitch call 𝑝𝑖 should be classified as a mistake or not. There

are two pieces to determining this classification: the pitch location and the location

of the strike zone. This seems trivial, as when watching on television this box often

appears as a stationary static rectangle. The strike zone is in fact static in its width,

as it is always equal to the width of home plate which is 17 inches. However, the

strike zone height changes according to the size of the batter up to bat. The umpire

is in charge of deciding the extent of this strike zone at the moment the batter starts

their swing [20].

Per the MLB’s official definition of a strike zone, it is defined as the

"midpoint between a batter’s shoulders and the top of the uniform pants,

when the batter is in his stance and prepared to swing at a pitched ball,

and a point just below the kneecap..." [9]

Given this definition, we can see the height of the strike zone is a function of the

batters height, as batters who are taller will tend to have a larger distance from their

22

Figure 3-2: Formulation of a strike zone per the MLB’s definition [1]
.

shoulders to the ground, raising the top of the strike zone higher. Figure 3-2 allows

us to visualize how this zone is calculated by the umpire from a given batter. Rather

than formulating our own method for determining these upper and lower bounds on

the zone, we rely on the MLB’s technology and dataset. To account for this, our

dataset has a pair of fields that allow us to define the strike zone for any given at bat

based on the batter’s size.

• SZ_Top - the height in feet of the top of the strike zone

• SZ_Bottom - the height in feet of the bottom of the strike zone

For our analysis, we will define the following correlations between Figure 3-2 and our

data fields: SZ_Top = "Midpoint" and SZ_Bottom = "Hollow below the kneecap".

Now that we have defined how a strike zone is calculated by an umpire, we can

dive into actually classifying any pitch as correctly or incorrectly called given our

23

definitions. In order to accurately classify a pitch, we must know the exact location

where our pitch crosses home plate and what it was called as. For this, we have three

data points for every pitch we will look at:

• PlateLocSide - the distance from the center of Home Plate in feet

• PlateLocHeight - the distance from the ground in feet

• PitchCall - the outcome of the pitch ∈ {Ball, Called Strike}

In order to more clearly define our framework for tracking pitch location, Figure

3-3 depicts an example strike zone with a given pitch and how these metrics are

interpreted. With reference to baseball terminology, we can think of classifying a

Figure 3-3: Visual representation of an example strike zone and a pitch’s tracking
data crossing home plate at location (PlateLocSide, PlateLocHeight).

pitch as a mistake if it was called a strike but is outside the strike zone or if it was

called a ball and was inside the strike zone. Using both our definition of the strike zone

24

in conjunction with the pitch location information, we define some boolean checks for

whether a pitch falls within different portions of our strike zone.

• InZoneWidth = PlateLocSide ≥ −8.5
12

and PlateLocSide ≤ 8.5
12

• InZoneHeight = PlateLocHeight ≥ SZ_Bottom and PlateLocHeight ≤ SZ_Top

Using the predefined checks for a given pitch, we can now define the following

formal method for classifying a pitch call 𝑝𝑖 as a mistake or not, with 1 being the

mistake classification and 0 being the correct classification.

𝑓(𝑝𝑖) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, if

(︀
InZoneWidth ∧ InZoneHeight

)︀
∧ 𝑝𝑖 ∈ {𝐵𝑎𝑙𝑙}

1, if
(︀
¬InZoneWidth ∨ ¬InZoneHeight

)︀
∧ 𝑝𝑖 ∈ {𝐶𝑎𝑙𝑙𝑒𝑑𝑆𝑡𝑟𝑖𝑘𝑒}

0, else

(3.1)

Using this method to classify our pitches dataset, we can now look at how mistakes

umpires make trend with the type of call they are making. Table 3.3 shows metrics

on all pitches in our dataset that an umpire must make a decision on. As we can

see, approximately 12% of the time, an umpire makes a mistake. On average, the

number of pitches an umpire must make a call on is ≈ 150. Given our accuracy rate of

87.823%, this means there are an average of ≈ 19 pitches in a game that are mistakes.

Looking at the holistic result of one game can give us a better picture of what these

mistakes tend to look like. Figure 3-4 charts all 121 pitches in a game between the

Phillies and Mets in 2017 where the umpire had to decide between Ball or Strike. Of

those 121 pitches, 47 were called strikes while 16 of those were mistakes (34% mistake

rate), while 74 were called balls and only 3 were mistakes (4% mistake rate). The

static strike zone visualized for this figure is the result of averaging all strike zone

upper and lower boundaries over our dataset to give us the closest estimate. For this

reason, there may be some pitches correctly classified as mistakes that appear to not

be mistakes according to this zone.

25

Pitch Call Correct Mistakes # of Pitches % Mistake

Called Strike 243,434 118,289 361,723 32.702

Ball 715,958 14,736 730,694 2.017

{Called Strike ∧ Ball} 959,392 133,025 1,092,417 12.177

Table 3.2: Metrics on the classifications of MLB pitches as mistakes.

As we can see, many of the mistakes have a small margin of error with the definition

of the strike zone. In a game as competitive as baseball where less than an inch can

decide a pitch call, these mistakes can hold large consequences. Depending on the

game situation when these mistakes occur, those pitch calls can drastically alter both

the outcome of the at-bat as well as the rest of the inning. In order to analyze exactly

how correcting these mistakes could have changed the statistics in the game following

the pitch, we must first look at the probabilistic transitions that occur from one game

state to another.

26

Figure 3-4: All charted pitches decided by an umpire in a game between the Phillies
and Mets on 04/17/2019.

27

28

Chapter 4

Extracting Baseball Game State

Transition Matrices

Once we have our pitches dataset classified according to an automated umpiring

model, we now must look to features about the game state in order in order to

generate transition matrices that can approximate the actual progression of a baseball

game. Once we discuss how we define the state of a game before any pitch, we will

move on to talk about how we generate two different transitional models that we can

use to simulate events in a game: a state to state Markov Chain and a state-event

probability table.

4.1 Game State Representation

In order to define our game state representation, we first have to think about the size

of our state space. State representation learning is a form of feature learning in which

an agent aims to learn about a domain of data by decomposing it into features from

which it can characterize the domain [18]. Baseball is similar in the fact that given a

handful of features that define the state of the game, one can learn what each feature

means and characterize how the game may progress forward. Rather than learning the

relationship of these features through intentionally choosing actions, we will instead

rely on actual baseball game data to create aggregate probabilistic transitions between

29

states and in turn their features.

First, we must define what our state representation will be such that we will

have statistically significant probability distributions over possible transitions when

we create our matrices. The features we look at are Inning, Outs, Runners on

Base, Runners in Scoring Position, Balls, and Strikes. All 6 of these fields are

available for every pitch in our MLB dataset. The following defines how we bin some

of the values together to create a state vector 𝑠𝑖:

• Innings:= 𝐼𝑖 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, if Inning = 1-3

1, if Inning = 4-6

2, if Inning = 7+

• Outs:= 𝑂𝑖 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, if Outs = 0

1, if Outs = 1

2, if Outs = 2

• Runners on Base:= 𝑅𝑂𝐵𝑖 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if ROB = 0

1, if ROB = 1

2, if ROB = 2

.3, if ROB = 3

• Runners in Scoring Position:= 𝑅𝐼𝑆𝑃𝑖 =

⎧⎪⎨⎪⎩0, if RISP = False

1, if RISP = True

• Balls:= 𝐵𝑖 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if Balls = 0

1, if Balls = 1

2, if Balls = 2

3, if Balls = 3

30

• Strikes:= 𝑆𝑖 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, if Strikes = 0

1, if Strikes = 1

2, if Strikes = 2

Putting these definitions together we create a state vector:

𝑠𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐼𝑖

𝑂𝑖

𝑅𝑂𝐵𝑖

𝑅𝐼𝑆𝑃𝑖

𝐵𝑖

𝑆𝑖

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.1)

One thing to note is that we bin innings together in batches of 3. This is because

we would like to distinguish between the early part of the game when both hitters

and pitchers are getting settled into the game and the end of the game when there are

more stressful situations on both hitters and batters. The magnitude of our possible

state space |𝑆| = 864 however due to the fact that not all states in our state space

are reachable per the rules of baseball, the number of distinct states present in our

dataset is only 540.

4.2 Calculating State Transition Matrices

Once we have calculated the game state representation for each at bat, we can use

these states to learn the probabilities of transitioning from one baseball state to an-

other. We must calculate probability distributions for both state-to-state transitions,

state-event pairs, and state-pitch call pairs. The reason behind this is that often times

in baseball, an event such as a single can have differing effects on the future state of

the game depending on how far runners advance around the bases. This means there

is not a one to one mapping between state-action pairs and the resultant state from

that action. We will need to use all three in a careful manner in order to simulate

31

these transitions accurately and realistically.

4.2.1 State-State Transitions

In order to create this State Transition Matrix 𝑀 , we can start by creating a matrix

such that every row and column corresponds to one of our states 𝑠𝑖 in our state space

𝑆 giving 𝑀 a shape of |𝑆| by |𝑆|. Every element in 𝑀 will be initialized as 0. We now

loop over every pitch in every game in our dataset to create a table. Due to the fact

that our dataset is incomplete and has stretches of pitches missing from some games,

we take care to only look at transitions that occur between consecutive pitches. This

still gives us simulation power later on as we simply treat missing pitches as data that

was not observed. Because we only care about local state transitions, transitions from

the current state we are looking at to the next state sequentially, it doesn’t matter

where these missing pitches would have been embedded in the game. After getting

rid of these missing transitions, we end up with 1,865,358 total transitions. For each

transition from a state 𝑠𝑖 to 𝑠𝑖+1 we augment our matrix like so:

𝑀 [𝑠𝑖, 𝑠𝑖+1] = 𝑀 [𝑠𝑖, 𝑠𝑖+1] + 1 (4.2)

By adding one to this element in 𝑀 we keep track of the number of times we

have seen the given transition in our dataset. After performing this calculation for all

sequential pitch state transitions, we can now normalize each row to get the transition

probability distribution given any starting state 𝑠𝑖.

𝑀 [𝑠𝑖, 𝑥] =
𝑥

sum(𝑀 [𝑠𝑖, :])
(4.3)

This matrix 𝑀 now gives the probabilities of transitioning from any state 𝑠𝑖 to any

another state 𝑠𝑗 in our state space 𝑆 at 𝑀 [𝑠𝑖, 𝑠𝑗]. The range of number of transitions

starting from any given state 𝑠𝑖 goes from [13, 44532] with a mean of 3341. Figure 4-1

32

depicts the transition diagram for the state 𝑠𝑖 = [0 1 0 0 1 1]. This translates to the

game state in which we are in innings 1, 2, or 3, there is 1 out, there are no runners

on base, and the count is 1-1. The transition probabilities for all possible transitions

𝑠𝑖 to another state 𝑠𝑗 in 𝑆 sum to 1.

Figure 4-1: Transition probability diagram for the baseball game state [0 1 0 0 1 1]
as defined in equation 4.1.

To better visualize our state transition matrix 𝑀 , we will consider all states in

the first three innings with 0 runners in scoring position. Figure 4-2 shows the top

20 most visited states this state subset in a chord diagram. The relative sizes of each

chord corresponds to the probability of transitioning between the game state at the

start of the chord to the game state and the end of the cord.

33

Figure 4-2: Chord diagram for the 20 most visited game states filtered by innings 1-3
and 0 runners in scoring position. Chord sizes are directly proportional to transition
probabilities between states with larger chords meaning a higher probability. Each
node depicts the number of outs, balls, strikes, and runners on base by filled in circles.

34

4.2.2 State-Event Transitions

Similarly to how we created our state transition matrix 𝑀 , we can also define matrices

𝐻𝑓 and 𝐻𝑡 to hold probability distributions over the different hitting events that occur

while in a given state and events that lead to a given state respectively. We define

our event space 𝐸 to be the events we will keep track of through our pipeline. The

events 𝐸 is comprised of describe different ways a ball can be put in play after a pitch:

single, double, triple, home run, field out, and field error. The latter two respectively

occur when either a hitter hits the pitch and gets out in the process of the play or

the hitter hits the ball and advances successfully to a base due to a fielding mistake.

Our State-Event transition matrix 𝐻𝑓 will have rows corresponding to all the

states in our state space 𝑆, while the columns will correspond to each of the hitting

events listed above in our event space 𝐸. Matrix 𝐻𝑡 will have rows corresponding to

events in our space 𝐸 while the columns will correspond to states in 𝑆. These two

matrices will allow us to both sample random events given a state and to sample a

new state from a probability distribution given an event.

In order to account for the event that the hitter does not actually make contact

with the ball, we have an Other event in 𝐸 that we will talk about later. Much

like we did in section 4.2.1, we can now loop through all pitches in our dataset,

for each pitch 𝑝𝑖 increment the counter at 𝐻𝑓 [𝑠𝑖, 𝑒𝑖] and 𝐻𝑡[𝑒𝑖, 𝑠𝑖+1] according to the

state before/after the pitch and the event that occurred during the pitch. Once

we normalize, this will give us our transition matrices that will give us probability

distributions for our state-event in spaces.

4.2.3 State-Pitch Transitions

Finally, we must account for the situations in which a pitch is thrown and the batter

does not hit the ball into fair play. For these situations, we create a transition matrix

𝑇 like we do in section 4.2.2 except the columns are now pitch call events in the space

𝑃 . These sorts of events include: called strikes, swinging strikes, balls, foul balls, and

hit by pitch.

35

Figures 4-3, 4-4, 4-5, and 4-6 allow us to visualize these matrix definitions. Once

we have created our transition matrices 𝑀 , 𝐻𝑓 , 𝐻𝑡, and 𝑇 we can now use them to

define a method for formally simulating the states and events that occur in a baseball

game.

Figure 4-3: Definition of Matrix 𝑀

36

Figure 4-4: Definition of Matrix 𝐻𝑓

Figure 4-5: Definition of Matrix 𝐻𝑡

37

Figure 4-6: Definition of Matrix 𝑇

38

Chapter 5

Monte Carlo Counterfactual

Simulations

Ultimately, the goal of this pipeline is to be able to quantify how the key statistics

in a baseball game (number of pitches, balls in play, hits, and home runs) change if

the MLB were to switch to an automated umping system. In order to do this we will

first look at the game state we are in when the mistake is made, correct the mistake

by switching to a new game state, and then extrapolate out the rest of the inning by

simulating the future game transitions multiple times and averaging.

5.1 Monte Carlo and Confidence Intervals

Monte Carlo methods allow us to model statistical results through the use of ran-

domness. Specifically in the case of a baseball game, we are dealing with a class of

Monte Carlo methods known as a Markov Chain Monte Carlo (MCMC) problem. For

these chains, the posterior distribution for transitioning to a state 𝑠𝑖 depends only on

𝑠𝑖−1 [17]. This fits exactly with the transition matrices we defined section 4.2 as the

probability distributions in each row depends solely on the previous state the game

is in.

A key parameter to tune in Monte Carlo simulations is the number of iterations 𝜏 .

For our methods, 𝜏 will correspond to the number of times we simulate a correct half

39

inning. Depending on the value chosen for 𝜏 , one must be concerned about whether

or not the Monte Carlo simulation will converge to represent the actual sample mean

and variance of the random variable we are trying to estimate (baseball statistics in

our case). For this work, we will focus on generating results that fall within a 95%

confidence interval, meaning the true parameter value we are estimating (expected

hits, home runs, or pitches) will fall within this confidence interval range 95% of the

time.

Define our confidence intervals for each of our Monte Carlo simulations with a

sample size of 𝜏 as follows. Because we do not know the mean 𝜇 or variance 𝜎2 of

our Monte Carlo variables and each sample is sampled independently, we can define:

𝑋̄ = (𝑋1 + · · ·+𝑋𝜏)/𝜏 (5.1)

𝑉 2 =
1

𝜏 − 1

𝜏∑︁
𝑖=1

(𝑋𝑖 − 𝑋̄)2 (5.2)

Where 𝑋 is our sample mean and 𝑉 2 is the sample variance. We can then define

𝑇 =
𝑋̄ − 𝜇

𝑉/
√
𝜏

(5.3)

where 𝑇 has what is called a Student’s t distribution which is a continuous prob-

ability distribution that arises when estimating the mean of a normally distributed

population where the sample size is small and the standard deviation is unknown [14].

Letting 𝑐 be equal to our 97.5th percentile distribution (a z-score of 1.96), we get:

𝑃𝑟
(︀
− 𝑐 ≤ 𝑇 ≤ 𝑐

)︀
= 0.95 (5.4)

We can then use this and equation 5.3 to generate a 95% confidence interval for our

population mean 𝜇 as follows:

40

𝑃𝑟
(︀
𝑋̄ − 𝑐𝑉√

𝜏
≤ 𝜇 ≤ 𝑋̄ +

𝑐𝑉√
𝜏

)︀
= 0.95 (5.5)

Finally, once we run a single Monte Carlo simulation and observe our sample, we can

substitute in the respective values to obtain the 95% confidence interval range:

[︂
𝑋̄ − 𝑐𝑉√

𝜏
, 𝑋̄ +

𝑐𝑉√
𝜏

]︂
(5.6)

This definition will help us to define and evaluate our final Monte Carlo method

results as we look to compare them to the actual aggregated MLB results.

5.2 Performing Monte Carlo Simulations

Now that we have laid the groundwork for the feasibility of using Markov Chain

Monte Carlo Methods with reference to our problem formulation, we can look at the

specific algorithm used to effectively correct an umpire’s mistake and simulate the

results following the change.

The first assumption we make is that individual half innings are independent of

each other. Both hitters and batters are going to try and perform to the best of

their abilities and because the only result from one half inning that carries over into

another is the score, we can assume our game state resets when a new half inning

starts. This means that statistical results in innings without mistakes can be used as

if it was played under our automated umpiring model. In order then to look at how

games change under this model, we only need to simulate half innings that have a

mistake in them.

In any half inning, the game state for any pitch 𝑝𝑖 is dependent on the sequence

of pitches 𝑝0, 𝑝1, ..., 𝑝𝑖−1 leading up to it. This means that for a sequence of pitches

defining a half inning, wherever there is a mistake, all proceeding pitches are possibly

affected and therefore must be simulated. Moreover we will define a sequence of

41

consecutive pitches 𝑠𝑒𝑞 where each pitch 𝑝𝑖 is defined by (PitchNumber, isMistake)

where PitchNumber is the sequential number of the pitch in the inning and isMistake

is a classification of the pitch as correctly called given our umpiring model as defined

in 3.1. A Monte Carlo simulation’s starting pitch 𝑖𝑠𝑡𝑎𝑟𝑡 must be the very first mistake

in the half inning, namely:

𝑖𝑠𝑡𝑎𝑟𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑝𝑖.PitchNumber if 𝑝𝑖.isMistake == 𝑇𝑟𝑢𝑒) (5.7)

Once we have found the first pitch with a mistake, in order to estimate the statistical

results we care about we can sum the results from pitches 𝑝0 to 𝑝𝑖𝑠𝑡𝑎𝑟𝑡−1 = ℎ𝑖, correct

the pitch call at 𝑝𝑖𝑠𝑡𝑎𝑟𝑡 to 𝑝𝑖′ and then use our Monte Carlo method to find the

estimated results following the correction of the mistake until the end of the half

inning 𝑚𝑖 = 𝑀𝑜𝑛𝑡𝑒(𝑝𝑖′). This will give us our estimated results ℎ𝑖 +𝑚𝑖.

Next, we define how we use our transition matrices 𝑀 , 𝐻, and 𝑇 that we defined

in section 4.2 to move from state to state during simulation. Algorithm 1 lays out

this overall method before we dive into the Monte Carlo Simulation aspect:

To simulate through a half inning as shown in helper function 𝑚𝑜𝑛𝑡𝑒𝐶𝑎𝑟𝑙𝑜𝑆𝑖𝑚()

we follow these general steps:

1. Generate a new state 𝑠𝑛𝑒𝑤 from our input game state 𝑠𝑖 depending on whether

the pitch call was mistakenly called a ball or strike

2. Sample a random event 𝑒𝑖 weighted according to the posterior distribution 𝐻[𝑠𝑖].

(a) If 𝑒𝑖 = Other as defined in 4.2.2, we have randomly sampled from space 𝑃 .

Randomly sample a new random pitch call from the posterior distribution

𝑇 [𝑠𝑖] and define it as 𝑒𝑖.

(b) If 𝑒𝑖 ̸= Other then we have chosen a hitting event from our event space 𝐸

and can use it.

42

Data: MLB Pitches dataset with ball tracking and game metadata
information

Result: Estimated game statistical results after correcting umpire mistakes
for game in games do

for half_inning in game do
mistakes = calculateMistakes(half_inning);
first_mistake = argmin(mistakes);
for sorted(pitch) in half_inning do

if pitch.pitchNumber != first_mistake then
𝑠𝑡𝑎𝑡𝑠 += accumulateStats(game, pitch)

end
else

𝑠𝑡𝑎𝑡𝑠 += monteCarloSim(game, pitch) break;
end

end
end
saveResults(game, stats)

end
Algorithm 1: Overall Simulation Algorithm: finds half innings with mistakes
and simulates following the first mistake in the inning

(c) Accumulate a counter for the sampled event/pitch call to keep track of the

number of occurrences in this iteration

3. Extract our State-State Transition distribution 𝑀 [𝑠𝑖]

4. Eliminate all states 𝑠𝑖+1 from 𝑀 [𝑠𝑖] s.t. 𝑠𝑖+1 /∈ {𝐻𝑡[𝑒𝑖]}

5. Renormalize and randomly sample a new state 𝑠𝑖+1 from the probability distri-

bution 𝑀 [𝑠𝑖].

6. Set our current state 𝑠𝑖 = 𝑠𝑖+1.

7. Repeats steps 2-6 until the number of outs in our game state 𝑠𝑖 is equal to 3

(end of the half inning).

8. Log the statistical results for the given monte carlo iteration.

9. Repeat steps 2-8 for 𝜏 iterations.

10. Average the final results to get the expected statistics for the simulated half

inning after correcting the mistake at pitch 𝑝𝑖.

43

One of the key steps in this simulation approach is step 4. During this step, we

use our posterior distributions we computed for which events lead to which states in

order to generate valid state-state transitions. After sampling our event, we find all

the states that are never transitioned to following the sampled event and get rid of

them as possible next states. This assumption relies on the fact that we have a large

enough dataset that fully represents all possible event transitions. However, in order

to ensure we were only performing valid state transitions, this rejection sampling

strategy was the best way to leverage the existing historical data without guessing

what the state could look like following an event.

In order to then extrapolate this Monte Carlo strategy to a game we first iterate

through a game and log the actual results. Then, we re-loop through all 18 half-

innings in the game, and use algorithm 1 to simulate the number of hits we would

expect to see given an automated umpiring system.

5.3 Average MLB Game

One of the most interesting questions we can answer using this Monte Carlo method

is "what does the average MLB game look like?" This is equivalent to running our

Monte Carlo method with a starting state of all 0’s except for the inning state which

would correspond to whichever inning we were simulating and summing up the 18

results. Figure 5-1 shows different statistical comparisons between the average MLB

game in the whole dataset and a completely simulated game using our Monte Carlo

method with 𝜏 = 2000. For all three categories, the MLB Dataset has a much higher

standard deviation, owing to the fact that because we are sampling from aggregated

posterior distributions of state and event transitions, we see much fewer outliers in

our Monte Carlo simulations because we use a large 𝜏 value and average our results

over all iterations.

Figure 5-2 lets us analyze the effect that 𝜏 has on the results we obtain while

simulating the average MLB game. All three statistical plots jump around initially

before leveling off and rising to their respective stable values. We chose to use 𝜏 =

44

Figure 5-1: Comparison of number statistical results in a Monte Carlo simulated
game compared to the average MLB game. The black error bars depict standard
deviations.

45

Figure 5-2: Visualizing effects of different iteration numbers 𝜏 when simulating a
Monte Carlo inning.

2000 when running our model on the MLB dataset as we believed this number of

iterations allowed convergence of values while also being feasibly possible to run.

Given we have 7276 games in our dataset, we will simulate on the order of 18 half

innings per game (possibly more or less depending on the absence of mistakes or

surplus of innings in a game that lasts longer than 9 innings. This is ≈ 131000

simulations. For the scope of this thesis, we needed to be able to run all of these

simulations in a timely manner in order to analyze the results and thus 2000 was

an upper bound on the number of iterations we could run while still maintaining

feasibility.

46

Chapter 6

Evaluation

After applying our mistake classification method, creating our game state represen-

tation transition matrices, and defining a robust model for using both in tangent to

fix classified mistakes using a Monte Carlo simulation, we can now look at evaluating

our results to draw conclusions about this problem space. We will use multiple fig-

ure types in order to visualize different patterns between the resulting statistics. We

will compare results both on a dataset-wide level as well as look at trends between

different innings and home-away status of the teams.

6.1 MLB Dataset Comparison

To begin, we can first look holistically at how our Monte Carlo simulated game results

compare to those of the MLB dataset aggregations on a game by game basis. These

results will be able to show us how the game stats we are focused on change as a

result of switching our umpiring system. These differences can help us determine

whether MLB-driven efforts to enhance the in person viewing experience would have

the desired or possibly undesired effect. Figures 6-1, 6-2, and 6-3 show histograms of

the relevant results for all 7, 726 games in our MLB Dataset. The green bars are plots

of the results from each game after fixing umpire mistakes and simulating through

the rest of innings with mistakes. We also visualize the means as dashed lines for

both groups of statistics. For all three major categories, our Monte Carlo results

47

Figure 6-1: Histogram charting number of hits in Monte Carlo fixed games vs. MLB
games.

seem to have higher averages. This makes intuitive baseball sense, as when referring

back to Table 3.3, we can see the majority of calls that are mistakes are "Called

Strikes". This means when we correct the game state by taking away a strike and

adding a ball, the batter is now at a more favorable count. In the long run, we would

expect more hits/pitches/home runs to stem from pitch counts that are better for

the batters. We also can see that on the contrary to the hits and pitches plots, in

Figure 6-2 the Monte Carlo distribution has a slightly right skewed distribution while

the MLB Game distribution is more uniform. This could be one possible cause of the

differences we see in means as there are ≈ 600 more games in the lowest bin for MLB

Games, bringing down the mean. This could be because MLB games can only have

an integer number of home runs.

To further dive into how the games changed due to automated umpiring, we can

also turn to standard deviations and our confidence intervals as defined in Section 5.1.

48

Figure 6-2: Histogram charting number of home runs in Monte Carlo fixed games
vs. MLB games.

49

Figure 6-3: Histogram charting number of pitches in Monte Carlo fixed games vs.
MLB games.

50

More specifically, for each statistical category, we compared the means 𝜇 for both our

Monte Carlo simulated games and the actual MLB games using the following formula:

% Change =
Monte 𝜇− Actual 𝜇

Actual 𝜇
(6.1)

This allowed us to compare the percentage change in all categories with respect

to our baseline results for all MLB games. Figure 6-4 lets us visualize our findings.

We plot a dashed line at 0 to show the baseline for zero change between both game

models. Each statistical point also shows upper and lower 95% confidence intervals

over the true mean of our Monte Carlo results. For both hits and home runs we

can see that there was around a 10 − 15% increase in both stats as a result of an

automated umpiring system. Pitches also showed an increase with a 7.8% increase

as well, although we can see the error bar does drop below 0. This shows that in the

process of correcting mistakes, although we more often than not create more favorable

hitting counts for batters, our model also can have the opposite effect of reducing the

number of pitches in the game.

6.2 Home vs. Away

In baseball, there is a saying commonly known as "home-field advantage". This

refers to the often imagined but sometimes statistically proven idea that the Home

team (team hosting the game in their stadium) has a competitive advantage due to

a multitude of factors. These factors often include fan attendance and crowd noise,

batting in the bottom of the inning, or simply the comfort of playing in a stadium you

are more familiar with. People also speculate about whether umpires make decisions

in favor of the home team in order to avoid backlash from heckling fan bases. This

is not supposed to be the case as umpires are supposed to call a baseball game fairly

for both teams. Using the model we have defined, we can look at how our statistical

results change with regards to the status of the team the umpire is making the calls

51

Figure 6-4: Analysis of the result mean differences for each statistical category.

for (Home vs. Away). Figures 6-5, 6-6, and 6-7 allow us to break down our results

from earlier into these two categories.

From both our Hits and Home Runs distributions, we can see there is little to

no difference between Home and Away teams. There is a slight difference between

Away and Home teams when looking at the Pitches distribution with Home teams

pitching slightly more pitches than away teams for both actual games and our Monte

Carlo simulations. This could be due to the fact that if a Home team enters the

bottom of the 9th inning winning already, the game is immediately over and the

Away team does not have to pitch that half inning, leading to slightly fewer pitches

over all games.

We can also visualize these same results by looking at the differences between our

Monte Carlo simulations and the actual games on a game by game basis (Figures

6-8, 6-9, and 6-10). We can see that although there is skewing of the distributions

52

Figure 6-5: Histogram charting number of Hits in Monte Carlo fixed games vs. MLB
games for Home vs. Away teams.

horizontally, this is indicative of differences between our model’s results and the game

results. Since both Home and Away distributions skew in the same way, we don’t

have any reason to suspect that umpires are making decisions differently depending

on the Home-Away status of a player. This is both good for the game of baseball to

know as well as good for an automated umpiring system in the future as using this

model would not have any unintended effects on MLB games.

53

Figure 6-6: Histogram charting number of Home Runs in Monte Carlo fixed games
vs. MLB games for Home vs. Away teams.

54

Figure 6-7: Histogram charting number of Pitches in Monte Carlo fixed games vs.
MLB games for Home vs. Away teams.

55

Figure 6-8: Histogram of differences in Hits between Monte results and actual results
for Home vs. Away teams.

56

Figure 6-9: Histogram of differences in Home Runs between Monte results and
actual results for Home vs. Away teams.

57

Figure 6-10: Histogram of differences in Pitches between Monte results and actual
results for Home vs. Away teams.

58

Chapter 7

Conclusion

In this chapter we will present some possible areas to expand on the techniques

presented in this thesis. We also look at the key insights to take away from the

results of our work.

7.1 Future Work

There are multiple areas for possible improvement of our game simulation method we

have defined in this work.

The first area would be further expansion of our game state representation to fully

encapsulate all aspects of a baseball game. This could include adding features such

as scores for each team, whether we are in the top or bottom of an inning, or specifics

about which runners are on which bases. This would provide a more comprehensive

game state and allow for further specificity in game state transition matrices. On the

flip side, this would also greatly increase the state space size and in turn more data

would be needed in order to have a non-trivial amount of observations for each game

state. In order to increase the dataset size, one could look into using baseball data

that pre-dates 2017.

Next, given an expansion of the game state representation to include runs for

each team, including the analysis of runs scored as a statistical category could be a

further improvement on detailing the effects this model would have to the game. By

59

analyzing runs scored, one would be able to look at both changes in runs as well as

changes in possible win-loss records for teams due to those run changes. This work

details how in game events could change as a result of an automated umping model,

however an analysis that identified both how in game events and in turn game results

changed could influence whether or not the MLB adopts this methodology.

One oversimplification that this model makes when defining the game events in

our event/pitch spaces 𝐸 and 𝑃 is the types of balls in play/pitch events that are

possible. Events such as double plays, pass balls, and runners stealing bases are all

things that happen over the course of a baseball game that change the game state.

For the sake of this work, we simplified our model not include these edge case events.

An expansion of the Monte Carlo simulations to include these events would give more

predictive power to the true results of baseball games as these events change game

results in ways that this model is unable to quantify in its current form.

In all types of sports, the one factor that drives success is player performance.

Accurately predicting player performance, either for the sake of adding new players

through a draft or trades or identifying players to get rid of, is a challenge faced by all

teams in the MLB. Although the findings in [15] are focused on predicting performance

for players transitioning from one professional league in Japan to the American MLB,

the methodologies still apply generally to predicting a baseball player’s statistical

performance. One way of doing this is through clustering methods. Given information

about similar hitters in the MLB and how they performed throughout the year, one

can make predictions about how that hitter will do in an upcoming year. This work

treats all hitters and pitchers as equivalent when generating our game state transition

probabilities. Those involved in baseball know however that not all hitters and batters

are the same. Some pitchers are great when they’re ahead in the count while others are

just not as good pitchers for whatever reason. Some batters hit for lost of home runs

but strike out often while others consistently get on base due to hits or walks but don’t

hit as many home runs. Transitions between game states would change depending

on what hitters or pitchers are currently at the plate/mound. For this thesis, we

started doing some statistical based k-means clustering on player performance in

60

order to more robustly aggregate game state transitions based on equivalent pitcher-

batter match ups. Due to the limitation in our dataset size, we were unable to draw

reasonable conclusions from the game state transition matrices due to the fact that we

did not observe enough hitter-pitcher match-ups between across all clusters to create

accurate probability distributions. With the addition of more data, implementing a

clustering method for similarly skilled players could result in game state transitions

and simulation results that more accurately depict an MLB game.

7.2 Key Insights

Our Monte Carlo based simulation method was able to produce realistic results that

we can draw conclusions from to answer the underlying question proposed in this work:

how would MLB baseball games change with the implementation of an automated

umping model. We were able to demonstrate how a possible umping model would

operate with respect to the definition of the strike zone in order to classify umpire

decisions as correct/incorrect. We also defined a representation for the state of the

game that allowed us to generate transition matrices in order to simulate a natural

and viable game progression. Finally, we were able to use the prior two contributions

together to define a Monte Carlo Method for approximating the statistical results

of a game given the correction of umpire mistakes throughout. In the process of

developing this pipeline, we were able to draw several important insights about the

typical MLB game that deserve reflection.

First, through our definition of an automated umpire pitch classification model,

we were able to identify a trend in the types of mistakes that umpires make. Although

most mistakes tend to be on pitches that lie around the border of the zone, most of

the calls that were classified as mistakes were called strikes by the umpire. Taken in

the context of a game, this is very important as it means when umpires make mistakes

≈ 89% of the time it is in favor of pitcher as it leads to another strike in the count or

even a possible strikeout.

We also were able to define a contextually accurate game state transition model

61

that relied on real-game transitions. Rather than trying to enumerate possible move-

ments from one state to another and manually removing those that were impossible,

we relied on our dataset to do this for us. This gave us realistic transition probability

distributions based on historical game data. One could extrapolate this methodology

for any sport in which you can reasonably represent the game state and for which

you have a dataset large enough to generate transition probabilities.

Through the use of our Monte Carlo simulations, we identified small yet non-

trivial changes in the statistical results of baseball games. Our automated umpiring

model suggests automated umping may lead to increasing values in all three major

categories we looked at (hits, home runs, and pitches). Taking on the lens of a casual

baseball fan, these findings are both good and bad. An increase in hits and home runs

means more runs and balls in play which would increase the excitement for most. On

the other hand, increasing the number of pitches would lead to an increase in duration

of the game with all else being equal.

These statistical findings are meant to be an unbiased view into the effects that

an automated umping system could have on the game of baseball in the MLB. Our

methods are by no means comprehensive of the intricacies of the game, however the

results obtained were reached through the analysis of historical data and can serve

as an accurate first step towards deciding whether this sort of technology should be

a part of the future of baseball.

62

Appendix A

Software Packages

All of the code used to perform the analyses throughout this work was written in

Python. This section highlights some of the major packages used to simulate and

visualize the results of using an automated umpiring model during MLB games. This

list is not extensive and only serves to illustrate the main high level tools that were

utilized.

1. matplotlib: data analysis visualization library [3]

2. numpy: efficient mathematical computational library, also used as random

number generator [6]

3. pandas: fast and efficient data analysis/manipulation tool [7]

4. scikit-learn: used for k-means clustering of hitters, predictive data analysis

tool [8]

5. seaborn: Package for enhanced visualization and formatting, built on top of

matplotlib [23]

63

64

Bibliography

[1] Baseball Strike Zone Dimensions & Drawings | Dimensions.com.

[2] Major League Miscellaneous Year-by-Year Averages and Totals.

[3] Matplotlib — Visualization with Python.

[4] MLB Pitch Data 2015-2018.

[5] National League of baseball is founded - HISTORY.

[6] NumPy.

[7] pandas - Python Data Analysis Library.

[8] scikit-learn: machine learning in Python — scikit-learn 1.0.2 documentation.

[9] Strike Zone | Glossary.

[10] TrackMan Baseball V3 - Software.

[11] An Exploration of MLB Umpires’ Strike Zones, May 2018.

[12] Robot Umpires Strike Zone: It’s Not as Simple as You Think, January 2018.

[13] Rethinking the Strike Zone: It’s Not a Square, February 2019.

[14] Student’s t-distribution, April 2022. Page Version ID: 1083494571.

[15] Eric A. E. Gerber and Bruce A. Craig. A mixed effects multinomial logistic-
normal model for forecasting baseball performance. Journal of Quantitative
Analysis in Sports, 17(3):221–239, September 2021. Publisher: De Gruyter.

[16] David J. Hunter. New metrics for evaluating home plate umpire consistency and
accuracy. Journal of Quantitative Analysis in Sports, 14(4):159–172, December
2018. Publisher: De Gruyter.

[17] Fränzi Korner-Nievergelt, Tobias Roth, Stefanie von Felten, Jérôme Guélat, Bet-
tina Almasi, and Pius Korner-Nievergelt. Chapter 12 - Markov Chain Monte
Carlo Simulation. In Fränzi Korner-Nievergelt, Tobias Roth, Stefanie von Felten,
Jérôme Guélat, Bettina Almasi, and Pius Korner-Nievergelt, editors, Bayesian
Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN, pages
197–212. Academic Press, Boston, January 2015.

65

[18] Timothée Lesort, Natalia Díaz-Rodríguez, Jean-Franois Goudou, and David Fil-
liat. State representation learning for control: An overview. Neural Networks,
108:379–392, December 2018.

[19] Brian M. Mills. Technological innovations in monitoring and evaluation: Evi-
dence of performance impacts among Major League Baseball umpires. Labour
Economics, 46:189–199, June 2017.

[20] Steve Nelson. Understanding the Strike Zone in Baseball.

[21] Adam Reiter. Major League Baseball: Why Games Need to Be Shortened and
How It Can Be Done.

[22] Tom Verducci. The technology boom is fundamentally altering baseball.

[23] Michael Waskom. seaborn: statistical data visualization. Journal of Open Source
Software, 6(60):3021, April 2021.

66

