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Abstract

AI algorithms based on convolutional neural networks (CNNs), coupled with their
high computational requirements, have stimulated the development of novel energy-
efficient hardware. Analog neural networks (ANNs) with in-memory computing (IMC)
using resistive random-access memory (RRAM) are promising architectures to reduce
latency and increase energy efficiency for IoT devices. However, interface circuitry, in-
cluding analog-to-digital converters (ADCs) between RRAM and digital components,
is becoming the bottleneck of the RRAM-based ANNs. To address this challenge, a
direct hybrid encoding for signed expressions (HESE) SAR is proposed to increase
the sparsity of ADC output.

In addition to the performance requirements, the security of IoT devices is of
paramount importance. An attacker can perform an ADC power side-channel attack
(PSA) to expose confidential information by tapping into the power supply of the
ADC. This attack exploits the strong correlation between the ADC digital output
codes and the ADC power supply using neural networks based PSA. Previous works
have implemented current equalizers or noise injections to protect ADCs from PSAs.
However, the current equalizer introduces a large area and energy overhead for the
ADC, which is not ideal for IoT applications. Additionally, the previous work with
noise injection only protects the probing of CDAC supply. To overcome these limita-
tions, two secure ADCs are proposed to improve both energy efficiency and security,
making them more suitable for real-world applications.

Thesis Supervisor: Anantha P. Chandrakasan
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Chapter 1

Introduction

1.1 Motivation

1.1.1 AIoT Applications

Following Moore’s Law [3], contemporary microprocessors accommodate billions of

transistors within just a few square millimeters of silicon area, offering remarkable

computing power, high processing performance, and accommodating a diverse array

of functionalities. This advancement has facilitated numerous applications, such as

portable electronics (e.g., laptops, smartphones), wearable health-monitoring systems,

and wireless sensor nodes. An increasing number of these devices possess computing

capabilities and are progressively interconnected, forming the "Internet of Things"

(IoT). The remarkable surge in computing power, alongside advancements in algo-

rithms and access to vast amounts of data, has also empowered modern computing

systems to execute various "Artificial Intelligence" (AI) tasks, including image recog-

nition [4], speech recognition [5], and natural language understanding [6]. IoT devices

with AI processing are called AIoT applications.

One particularly intriguing aspect of these recognition systems is the "always-ON"

sensing capability, enabling continuous data collection and environmental monitor-

ing. Upon detecting an event of interest (e.g., a human face) through an "always-ON"

component (e.g., face detection), more complex systems (e.g., a face recognition sys-
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tem typically in "sleep" mode to conserve energy) can be activated for further data

processing. However, the growing number of "smart" and "always-ON" systems often

face limited energy budgets, as they typically rely on batteries or ambient energy har-

vesting. Consequently, energy efficiency is a paramount concern for the sustainable

implementation of these computing systems in real-world applications.

This thesis proposes a direct hybrid encoding for signed expressions (HESE) SAR

to increase the sparsity of ADC output, which will enable improved energy efficiency

of RRAM-based ANNs for AIoT applications.

1.1.2 ADC Attack Scenario

Analog-to-digital converters (ADCs) serve as essential components within electronic

systems, responsible for transforming analog signals into their digital counterparts.

With the increasing prominence of digital signal processing, there has been a concerted

effort by researchers to enhance ADC performance, optimize power consumption,

and minimize the physical area. Despite these advancements, recent studies [7][8]

have identified a significant hardware security vulnerability arising from ADC side-

channel attacks. This vulnerability is situated at the interface between analog circuits

and digital processors, presenting a novel research direction for ADC studies. This

thesis also aims to investigate and address the challenges posed by ADC side-channel

attacks, contributing to the development of more secure and robust electronic devices.

In the field of cryptographic hardware research, side-channel attacks refer to those

that capitalize on security vulnerabilities stemming from the physical implementation

of a cryptographic algorithm, rather than any inherent weaknesses in the algorithm

itself. For instance, the power side-channel attack (PSA) or electromagnetic side-

channel attack (EMSA) occurs when an attacker exploits the power supply current

waveforms or electromagnetic signals associated with an encryption engine to extract

the secret key of a given cryptographic algorithm. Various classes of side-channel

attacks exist, contingent upon the type of side-channel leakage exploited by the at-

tacker.

Sensing hardware like sensors and ADCs serves as a crucial link between real-
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world physical phenomena and electronic systems, making it prevalent across various

application domains. As depicted in Figure 1-1, typical sensing hardware comprises

a sensor and a sensor interface circuit. The sensor transforms a physical quantity

(e.g., temperature, pressure, light, or position) into an electrical signal, which is

subsequently processed by the sensor interface circuit. An analog frontend (AFE)

circuit interfaces with the sensor to condition the analog signal it produces. Following

this, an analog-to-digital converter (ADC) digitizes the conditioned analog signal.

Prior to providing the digitized sensor output value to the intended user, the sensor

interface circuit may perform digital signal processing (DSP) and encryption for data

reduction and security enhancement, respectively.

Frequently, sensing hardware generates sensitive sensor data that should be exclu-

sively accessible to authorized users like implantable devices. For instance, healthcare

sensing hardware monitoring ECG signals may inadvertently expose confidential per-

sonal health information to potential adversaries. Similarly, data gathered by tem-

perature sensors and utility meters within a smart home can reveal an individual’s
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lifestyle patterns [9].

The security of ADCs is also a significant concern. An attacker can perform

an ADC power side-channel attack (PSA) to steal confidential and sensitive signals

by tapping into the power supply of the ADC. Such attacks can exploit the strong

correlation between the ADC digital output codes and the ADC power supply with

neural networks based PSA.

Potential security threats within sensing hardware are also shown in Figure 1-1.

First, an attacker may attempt to intercept wireline or wireless communication be-

tween the sensing hardware and the user. This risk can be mitigated by encrypting

sensor data [10] and adhering to established security protocols [11]. Second, an at-

tacker may try to breach secure communication by executing a power side-channel

attack (PSA) on the encryption engine. If successful in extracting the secret key

of the encryption algorithm (e.g., AES) [12][13][14], the attacker could decode the

encrypted data to access the original sensor information.

Third, an attacker might attempt to measure the analog sensor output signal di-

rectly. Given the typically high output impedance of most sensors, an additional sen-

sor interface circuit introduced by an attacker is likely to disrupt the sensitive analog

signal chain within the sensing hardware. This direct measurement can be thwarted

by enclosing both the sensor and the sensor interface circuit within a tamper-proof

package [15]. Lastly, if prior security vulnerabilities are addressed, an attacker may

still perform a PSA or EMSA on analog/mixed-signal circuits, particularly ADCs. As

ADC operations heavily rely on the sampled analog input voltage (or the equivalent

digital output bits), the power supply current waveforms or EM leakage of the ADC

may correlate with private sensor data. An attacker could exploit this correlation to

reconstruct the digitized private sensor signal from the ADC power supply current

waveforms.

Unlike the direct measurement of the analog sensor output signal, the PSA or

EMSA of analog/mixed-signal circuits does not disturb the sensitive analog signal

chain, as analog circuits are typically designed to withstand minor perturbations in

their power supply voltage. Unfortunately, due to constraints like battery replacement
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requirements or physical size limitations of sensing hardware, tamper-proof packag-

ing may not always extend to encompass the power source and power management

circuit. In such cases, tamper-proof packaging is not a viable countermeasure against

analog/mixed-signal domain PSAs and EMSAs [7][8][16].

The power or EM side-channel leakage of an ADC poses a significant security

threat, as it exposes the private signal chain data before encryption. Considering the

numerous applications of ADCs, the ADC PSA or EMSA scenario in sensing hardware

can be extrapolated to other types of hardware that process sensitive information

(e.g., communication systems).

1.2 ADC Implementation

Analog-to-digital converters (ADCs) are critical components in various systems and

devices used in the world today. They enable the conversion of analog signals into

digital signals that can be processed by digital circuits, allowing for the processing,

storage, and transmission of data. ADCs are essential in numerous applications,

including communications, healthcare, transportation, aerospace, and defense. For

example, in medical devices, ADCs play a crucial role in the accurate measurement

and monitoring of vital signs. In the transportation sector, ADCs are used in sensors

to monitor and control various parameters, such as speed, acceleration, and temper-

ature. ADCs have significant importance in enabling the digital transformation of

various industries, which can have a positive impact on the world’s economy and

quality of life. Researchers push the performance of ADCs with various techniques

[17].

1.2.1 Direct HESE SAR ADC: The first sparsity-aware ADC

for analog neural networks

The proposed work introduces a novel bit-level sparsity-aware successive approxima-

tion register (SAR) ADC that directly produces Hybrid Encoding for Signed Expres-
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sions (HESE). This 12-bit resolution ADC is designed to support large artificial neural

networks (ANNs) with good accuracy. The proposed HESE ADC incorporates two

thresholds for 2-bits look-ahead (LA), and noise averaging (NA) is performed in the

last two bit cycles. The proposed HESE SAR achieves an impressive figure of merit

(FoM) of 15.2 fJ/conv.-step at 45MS/s, with a core area of only 0.072mm2.

1.2.2 RaM-SAR: The first secure ADC for high-speed appli-

cations

Designing secure analog-to-digital converters (ADCs) is a significant challenge in in-

tegrated circuit design, especially for low-power, high-speed, and small form-factor

systems used in the Internet of Things (IoT) and wearable devices. Such systems

are vulnerable to side-channel attacks that can extract sensitive information from

their power consumption or electromagnetic emissions. To address this challenge,

we propose RaM-SAR, a secure random-mapping SAR ADC that provides resistance

against both power and electromagnetic side-channel attacks. This 12-bit, 25 MS/s

ADC achieves an energy consumption of 11.3 fJ per conversion step by using a novel

random-mapping technique that randomly maps each conversion to one of 4096 con-

version sequences. This randomization helps to protect against neural network-based

power and electromagnetic side-channel attacks.

1.2.3 Sniff-SAR: The first detection-driven and un-trainable

secure ADC

Because of the need for more secure ADCs capable of detecting and protecting against

power and EM side-channel attacks, Sniff-SAR is developed. This 9.8fJ/c.-s 12b

secure ADC incorporates detection-driven protection against side-channel attacks

through the use of EMSA and PSA detectors. While the ADC core performs the

analog-to-digital conversion, it normally operates in the unprotected SAR mode which

is faster and more energy efficient. Periodically, the EMSA and PSA detectors check

for side-channel attacks, and if detected, the ADC activates the secure SAR mode
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against both EMSA and PSA. The secure mode provides 3.6x1016 different switch-

ing traces, making it impractical to train the ADC with neural networks for PSA

or EMSA. These innovative features make Sniff-SAR an effective solution for secure

ADCs and have the potential to greatly enhance the security of a wide range of

electronic systems.

1.3 Thesis Organization

Background knowledge is introduced in chapter 2. Analog neural networks and spar-

sity encoding are discussed. Common side-channel attacks are introduced and the

basic of successive-and-approximation registers (SAR) ADCs is mentioned. In chap-

ter 3, detailed implementation and measurement results are shown for the direct

HESE SAR ADC [18]. In chapter 4, detailed implementation and measurement re-

sults are shown for the RaM-SAR [7]. In chapter 5, detailed implementation and

measurement results are shown for the Sniff-SAR. Conclusions and future work are

discussed in chapter 6.
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Chapter 2

Background

2.1 Analog Neural Networks

2.1.1 Memory-wall

The term "memory-wall" [19] refers to the growing disparity between CPU clock

speeds and memory access times. Although CMOS scaling has led to smaller and

faster transistors, which boost CPU speeds, overall processing times remain con-

strained by slow memory access times. To sustain Moore’s Law, multi-core processor

designs began gaining traction around 2005. However, the parallel operation of mul-

tiple cores made on-chip memory bandwidth and energy consumption increasingly

dominant concerns.

A primary factor contributing to memory being a bottleneck in modern computing

systems is the traditional "von-Neumann" architecture, which physically separates

memory and processor, with data flowing between them. This configuration results in

limited data transfer bandwidth, dictated by the memory input/output (IO) capacity.

Consequently, in contemporary computing systems, a significant portion of time and

energy is expended moving data between memory and processing elements [20].
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2.1.2 Analog Neural Networks

Analog neural networks (ANNs) [21] are a type of artificial neural network that uses

analog electronic circuits to perform computations. They mimic the behavior of bio-

logical neurons by using continuous voltage signals instead of digital signals. ANNs

are considered to be highly energy-efficient and can process signals in parallel, making

them well-suited for tasks such as image and speech recognition. In-memory comput-

ing (IMC) using resistive random-access memory (RRAM) is a promising architec-

ture for ANNs as it reduces latency and increases energy efficiency for IoT devices.

However, the interface circuitry between RRAM and digital components, including

analog-to-digital converters (ADCs), is becoming a bottleneck for the development

of ANNs. Additionally, the security of ADCs is a significant concern as they are

vulnerable to power and electromagnetic side-channel attacks. Therefore, there is a

growing interest in developing secure and energy-efficient ADCs for ANNs that can

enable the development of more efficient and secure AI algorithms for IoT devices.

With the increasing popularity of generative AI applications like chatGPT [22],

the amount of storage needed is increasing tremendously for Large Language Models

(LLMs). Hardware implementations of LLMs face major challenges in dealing with

the huge amount of data movement. The memory access and data movement energies

are the dominant ones, compared to the computation energy [23].

Various methods are possible for tackling the memory bottleneck in modern com-

puting systems. Dynamic Voltage Scaling (DVS) is an effective way to reduce the

energy consumption of the memory subsystem [24]. However, memory like SRAM

does not scale easily as in logic circuits, due to the reduction of operating margins.

One promising approach is the concept of analog neural networks, which blurs the

line between conventional memories and compute elements, by computing inside the

memory.
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Figure 2-1: The distributions of weights in AlexNet shape the distribution of the
number of terms in a binary encoding and the efficient HESE encoding.

2.1.3 Sparsity Encoding

Sparsity encoding is a powerful technique in machine learning that aims to enhance the

efficiency and performance of algorithms by capitalizing on the inherent sparsity found

in various machine learning models. In the context of machine learning, sparsity refers

to the notion that not all features within a dataset hold equal significance in predicting

the outcome of a specific task [25]. As a result, by identifying and either removing

or diminishing the impact of less critical features, algorithms can be streamlined

and made more accurate. To accomplish this, sparsity encoding techniques, such as

Hybrid Encoding for Signed Expressions (HESE) and term quantization (TQ) [1],

have been developed and refined over time.

These techniques facilitate the effective encoding of sparse matrices, which fre-

quently emerge in machine learning tasks. By minimizing the number of non-zero

elements in these matrices, sparsity encoding can dramatically decrease the computa-

tional complexity of machine learning algorithms, leading to faster processing times

and more efficient use of resources. This is particularly beneficial in applications

with constrained computational capabilities, such as those found in mobile devices,

Internet of Things (IoT) systems, and other embedded systems.

To implement sparsity encoding effectively, several techniques have been proposed.
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Hybrid Encoding for Signed Expressions (HESE) is one such method that aims to

compress sparse matrices by identifying patterns in the data and encoding them in

a more compact form [1]. This can lead to significant reductions in memory usage

and computational overhead, making it particularly well-suited for applications with

limited resources.

Another sparsity encoding technique, term quantization (TQ), focuses on quan-

tizing the terms in a group of weights rather than truncating all the lower bits of the

weights [1]. By quantizing less important terms, TQ can minimize its influence on

the model’s predictions, allowing it to concentrate on the most significant aspects of

the data. This results in a more efficient and accurate model that is better equipped

to handle real-world problems.

As the demand for machine learning applications in various domains continues to

grow, the need for efficient and effective algorithms becomes increasingly important.

Sparsity encoding techniques, such as HESE and TQ, play a crucial role in addressing

this need by enabling algorithms to focus on the most relevant features and discard

the rest. By reducing computational complexity and memory requirements, these

techniques pave the way for more advanced machine learning applications in resource-

constrained environments, unlocking new possibilities for mobile devices, IoT systems,

and other embedded platforms.

2.2 Side-channel Attacks

2.2.1 Digital Hardware PSA

Following the initial demonstration of power side-channel attacks (PSAs) on digital

cryptographic hardware [12], researchers have investigated both attack and counter-

measure strategies for the digital encryption engine PSAs. Given the similarities

between cryptographic hardware PSAs and ADC PSAs, ADC PSA and EMSA re-

searchers can benefit from the concepts and techniques previously developed in cryp-

tographic hardware PSA research.
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Cryptographic hardware power side-channel attacks (PSAs) can be broadly cate-

gorized into two classes based on the assumptions made to construct a power analysis

model that correlates the secret key with the power traces: profiled attacks and non-

profiled attacks.

A profiled attack is based on the assumption that an attacker has the opportunity

to experiment with a training device before gaining access to the target device [26].

The training device is a piece of digital cryptographic hardware that shares the same

part number and algorithm implementation as the target device. Profiled attacks

comprise two phases: profiling and attacking.

During the profiling phase, the attacker has full control over the training device

and collects numerous power traces for all conditions intended to be modeled. Subse-

quently, the attacker constructs the power analysis model using the gathered power

traces. In the attacking phase, the attacker measures the power traces of the target

device and performs a Maximum Likelihood Estimation (MLE) with the prepared

power analysis model. This approach enables the attacker to uncover the secret key

of the target cryptographic hardware. Template attacks and stochastic attacks, based

on multivariate Gaussian distribution, have been introduced as profiled attacks [26].

Recently, neural networks have emerged as a new tool for implementing power analysis

models in profiled attacks [27].

A non-profiled attack assumes an attacker performs a PSA directly on the target

cryptographic hardware without utilizing a training device. Since the attacker has

no prior knowledge of the target cryptographic hardware, the power analysis model

for a non-profiled attack is based on a hypothesis that connects the secret key to the

hardware power traces. For all potential secret key guesses, the attacker evaluates

the relationship between the key guess and the measured power traces of the target

device based on the hypothesis.

The attacker quantifies this evaluation using a distinguisher and identifies the

secret key with the highest distinguisher output value. Non-profiled attacks typically

require a significantly larger number of power traces than profiled attacks to correctly

identify the secret key using the distinguisher. In line with profiled attack research, a
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recent non-profiled attack study utilized neural networks to construct its distinguisher

[14].

Countermeasures have also been studied for the digital hardware PSA: algorithm-

level countermeasure and hardware-level countermeasure.

Algorithm-level countermeasures are implemented in software and involve modify-

ing the internal computations of an encryption algorithm in a manner that reduces the

correlation between the secret key and the hardware power traces without compromis-

ing the security of the encryption algorithm. Masking is a widely used algorithmic-

level countermeasure that accomplishes this by concealing the intermediate data of

an encryption algorithm using random values known as masks [28].

For hardware-level countermeasures, circuit implementation is modified to increase

the PSA-resistance of digital hardware. Equalization and randomization are two

methods. For equalization, [29] uses differential logic gates to equalize the power

traces and [30] equalizes the power traces with an on-chip current equalizer. For ran-

domization, [31] introduces random dithering in the control loop of a buck regulator.

2.2.2 ADC PSA and EMSA

ADC PSA was first introduced in [15]. For slope-based ADCs, attackers could steal

the private conversion output by monitoring the duration of the A/D conversion.

Slope-based ADCs, however, are less common than SAR ADCs in many high-speed

low-power applications.

Noise injection technique was reported in [32]. It injects the same dither to the

CDAC as well as the comparator to randomize the conversion sequence. While the

technique showed promise against correlation based template-matching attacks, the

resiliency against more sophisticated neural net based attacks has not been demon-

strated.

Switched capacitor equalizer protection was reported in [16]. The current equalizer

obscures the power traces by supplying the power from an on-chip capacitor. The

power supply traces are nearly identical regardless of the ADC outputs. The switched

capacitor current equalizer has 3 phases. They are charge, supply, and purge phases.
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Figure 2-2: A single-ended 12 bits SAR ADC with 8-4 segmented capacitor array

In the charge phase, the supply capacitor is charged to VDD. In the supply phase,

the supply capacitor supply power to the ADC. The current supplied by the supply

capacitor depends on the DAC capacitor switching, but it is isolated from the power

supply pin of the chip. Thus, the ADC is protected from PSA. In the purge phase,

the supply capacitor is discharged to a fixed voltage before being recharged.

Random switching scheme was reported in [8]. The first few MSB capacitors of

the CDAC are split into unit capacitors. These capacitors are switched at random

times. The decision timing is also random. This makes training for power or EM

side-channel attacks difficult.

ADC PSA and EMSA share the same objectives with digital cryptographic hard-

ware PSA. Both attackers need to find the correlation between the side-channel in-

formation and the private data. Defense against both attacks aims to decouple the

private data and the side-channel leakage.

Digital cryptographic hardware PSA, however, tries to extract the exact key of the

cryptographic algorithm. However, every bit should be correct to break the algorithm.

It’s fine for ADC PSA or EMSA to get time-series data with limited resolution. For

example, 8 bits are enough to estimate the heart rate from an ECG signal [33]. The

effectiveness of the ADC PSA or EMSA is evaluated with relative error to the real

ADC outputs.
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2.3 Successive-Approximation Registers (SAR) ADCs

Successive approximation register (SAR) analog-to-digital converters (ADCs) [34] are

a type of ADC that use a binary search algorithm to convert analog signals into digital

signals. SAR ADCs are widely used in various applications due to their high accuracy

and low power consumption. They work by first comparing the input signal to the

midpoint of the ADC’s range and then using the result to determine which half of the

range to further search. This process continues until the resolution is achieved. SAR

ADCs are particularly well-suited for low-power and low-speed applications where

high resolution is required. They are also used in systems where accuracy and linearity

are critical, such as in medical devices and sensors. As the demand for low-power

and high-resolution ADCs continues to grow in various industries, there is a need for

continued development of SAR ADC technology to meet these demands.

Figure 2-2 shows the basics of single-ended SAR ADC with 8 MSBs and 4 LSBs

segmented capacitor array and bottom-plate sampling. The SAR ADC typically

consists of the sample-and-hold circuitry, a comparator, a feedback DAC, and the

SAR logic. In the common capacitor DAC implementation, the sample-and-hold

function is incorporated in the DAC.

The components and the connections of the SAR are described as follows. The

bottom plate of the capacitors is connected to one of the three voltages (Vin, GND,

and VDD). SW signal controls the switches of the capacitors. The top plate of the

capacitor array is connected to the negative input of the comparator. The positive

input of the comparator is connected to the ground. In a single-supply system,

the positive input of the comparator is connected to a common mode voltage. The

comparator output serves as an input for the SAR Logic block. CLK is the global

clock that controls the comparator strobe and the SAR Logic. The nRST signal resets

the state machine inside the SAR Logic. The ADCEN signal is the enable signal for

the SAR. EOC is the end-of-conversion signal for a later phase. The DOUT signal

contains 12 bits of converted binary digital code. The DAC array is separated into

MSB DAC and LSB DAC to save energy. The LSB DAC is not labeled for simplicity.
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Figure 2-3: Potential security loopholes in video hardware

The bridge capacitor 𝐶𝑐 helps to interpolate the LSB in MSB DAC into 4 bits.

Differential operations are popular in the SAR ADC implementation to reduce

the sensitive common mode and power supply disturbance. All ADCs in this thesis

are implemented in differential mode.

Conventional ADCs have a high correlation between the side-channel information

and the digital outputs. The attack can use pre-trained CNNs to decode the informa-

tion and steal the sensitive information. RaM-SAR uses the random-mapping (RaM)

technique that let the ADC has a random waveform during each conversion. This

makes it very difficult for the attacker to the PSA or EMSA.

2.4 Previous Work on Secure ADCs

[16] (Figure. 2-3, left) implemented a current equalizer to decorrelate the supply

current of all blocks from digital outputs. The idea is to use the current equalizer

as the voltage supply so that the power pattern is similar for each conversion. The

current equalizer has three switches and a large capacitor. The capacitor is first

charged to a fixed value. The capacitor then uses charge to supply the ADC core. In

the end, the capacitor is discharged to a fixed value. This scheme provides medium

security against EMSA as the attacker can get the ADC power trace using an EM

probe. The area and power have room for improvement due to the large capacitor.
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The technique is also not secured against EMSA as the attacker can directly probe

the power trace of the ADC core.

[8] (Figure. 2-3, middle) proposed to control the unit capacitors for the MSB

bits independently and switch them randomly to randomize the power traces. The

technique can protect against both PSA and EMSA. The energy efficiency has room

for improvement due to extra wiring and control logic.high-speed

Recently, integrated regulators with control loop randomizers [31][35] and shunt

linear regulators [36][37] have been proposed for general PSA and EMSA protection

with the trade-off of the performance of the core circuit. [31] present the enhanced

PSA resistance provided by an on-die all-digital high-frequency integrated inductive

voltage regulators (IVRs), fabricated in 130nm CMOS technology, for a standard (un-

protected) 128-bit Advanced Encryption Standard (AES) core designed using static

CMOS logic. The IVR is equipped with a configurable digital proportional-integral-

derivative (PID) controller, a digital discontinuous conduction mode (DCM) con-

troller, and a loop randomization (LR) block.

[35] presents enhanced power and EM SCA resistance for standard (unprotected)

128-bit AES engines with parallel (P-AES, 128-bit) and serial (S-AES, 8-bit) data-

paths using an on-die security-aware all-digital series low-dropout (DLDO) regula-

tor, commonly employed for fine-grain SoC power management. The security-aware

DLDO bolsters SCA resistance by introducing control-loop induced perturbations

in a baseline DLDO, further enhanced by a random switching noise injector (SNI)

through power stage control, and a randomized reference voltage (R-VREF) generator

combined with all-digital clock modulation (ADCM).

[36] builds upon the concept of signature attenuation in the current domain but

introduces a fully-synthesizable design featuring digital current sources, control loop,

and bleed. This approach increases the minimum traces to disclosure (MTD) from 10

million to 250 million (a 25x improvement) using a single synthesizable countermea-

sure. Furthermore, by combining the digital signature attenuation circuit (DSAC)

with a second synthesizable generic technique in the form of a time-varying transfer

function (TVTF), this work achieves an MTD of over 1.25 billion for both EM and
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power SCA, demonstrating a robust and scalable solution for enhancing cryptographic

algorithm security.

Considering that the correlated current is the source of both power (at the supply

pin) and EM leakage (radiation throughout the current path), [37] adopts current-

domain ’signature attenuation’ (CDSA) as a low-overhead generic countermeasure

against both EM and power side-channel attacks. This approach aims to achieve

the highest MTD reported to date, providing a more efficient and secure solution for

protecting cryptographic algorithms against side-channel attacks.
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Chapter 3

Direct HESE SAR ADC for AIoT

Applications

3.1 Introduction

The application space of AIoT is huge, ranging from fundamental research to personal

daily life. AIoT has great potential in the future. By 2030, ∼350 billion AIoT

devices are expected to be in operation, reaching $16 trillion, or 14% of total GDP

[38][39]. With the increasing need for edge computing and long battery life, AIoT

devices with low standby power and high efficiency for neural network inference are in

great demand. The applications include microphones, industry monitoring, vital-sign

monitoring devices, etc. End devices with speech interfaces can benefit greatly from

ultra-low power AIoT devices, such as Voice Activity Detection (VAD) and Keyword

Spotting (KWS) [40] systems. Both VAD and KWS systems have to be always-on

and highly efficient in inference. AIoT devices are also ubiquitous in machine health

monitoring products that minimize downtime with sensor signals [41]. Moreover, the

AIoT system with a reconfigurable rectenna opens up opportunities for wireless and

battery-less in-body vital-sign monitoring [42].

Conventional AIoT systems, however, still need to improve their energy efficiency.

For battery-constrained AIoT systems, energy-efficient implementations would bring

longer battery life and better user experience. For AIoT systems with connected
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power sources, low-power designs are still preferred as they are more environmentally

friendly. Some features in conventional AIoT systems can be explored to lower power

consumption and improve the energy-efficiency. For sensing, the input signals usually

have low activity. For computing, the data in embedded neural networks are highly

sparse. For memory access, data reuse can improve energy efficiency associated with

the memory wall in the von Neumann architecture.

AI algorithms based on CNNs, coupled with their high computational require-

ments, have stimulated the development of novel energy-efficient hardware, such as

Eyeriss [43]. Previous work applies term quantization to the weights [44] and uses

binary encoding [21][45] in ANNs. Hybrid encoding for signed expressions (HESE)

and term quantization (TQ) to the outputs of each layer further reduces the non-

zero terms and increase sparsity (Figure 3-1). The HESE signed digit representation

(SDR) is directly generated during the analog-to-digital conversion. The HESE SDR

has both positive and negative terms to reduce the non-zero terms. The TQ prunes

out small terms in a group basis.

In this work, we propose the first bit-level sparsity-aware successive approximation

register (SAR) ADC which directly produces HESE. The 12-bit resolution can support

large ANNs with good accuracy. The proposed HESE ADC has two thresholds for

2-bits look-ahead (LA) and noise averaging (NA) is performed in the last two bit

cycles. The proposed HESE SAR achieves a FoM of 15.2 fJ/conv.-step at 45MS/s.

The core area of the SAR ADC is 0.072mm2.

The main contributions of the work are:

• The first direct HESE SAR ADC to provide sparse encoding during the analog-

to-digital conversion with 2-bit look-ahead and the noise averaging at the last

couple of cycles.

• The use of direct HESE SAR ADC along with term quantization (TQ) to in-

crease the sparsity in analog neural networks (ANNs).
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Figure 3-1: An example crossbar of RRAM with 1-bit RRAM cells and 1-bit input
values for computing dot products. Both data and weights are bit-sliced, with each
weight term occupying a separate RRAM column. The proposed SAR ADC directly
provides the hybrid encoding for signed expressions (HESE) signed-digit representa-
tion (SDR) to minimize the number of non-zero terms. Also, term quantization [1]
sets low-order power-of-two terms to 0, indicated by red slashes, to satisfy a group
term budget. The Figure illustrates a case when 50% of input terms are zeros. In
forming the dot product of the input and an RRAM column of weight terms, prod-
ucts on the column to be output for accumulation have 50% or higher sparsity, given
that some weight terms may be zeros. The direct HESE SAR ADC introduces extra
sparsity other than TQ and reduces the energy of computation.
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3.2 Specific Background

3.2.1 Analog Neural Networks for CNNs

Analog Neural Networks (ANNs) typically use RRAM crossbars to both store CNN

weights and perform matrix multiplication in-memory in an analog fashion [21][45].

An example crossbar of RRAM with 1-bit RRAM cells and 1-bit input values for

computing dot products is shown in Figure 3-1. Both data and weights are bit-sliced,

with each weight term occupying a separate RRAM column. The proposed SAR

ADC directly provides the hybrid encoding for signed expressions (HESE) signed-

digit representation (SDR) to minimize the number of non-zero terms. Also, term

quantization [1][46][47] sets low-order power-of-two terms to 0 with red slashes to

satisfy a group budget. The direct HESE SAR ADC introduces extra sparsity other

than TQ and reduces the energy of computation.

3.2.2 Hybrid encoding for signed expressions

IN-A-RUN (IAR) 
(denoted by * in (b))
If 2bit LA is 00

1-> -1
Enter 
NIAR

Else
0-> -1 Output -1
1-> 0 Output 0

NOT-IN-A-RUN (NIAR)
If 2bit LA is 11

0-> 1
Enter 
IAR

Else
0-> 0 Output 0
1-> 1 Output 1

Figure 3-2: An illustration of term quantization (TQ), which keeps the largest non-
zero 10 terms across a group of 5 data.

As shown in Figure 3-2, HESE SDR [1][48] is an efficient one-pass encoding scheme

to produce minimum-length signed expression representations. Along with the term

quantization (TQ) in [44], HESE SDR can further reduce the non-zero terms. This

L2R HESE SDR with 2-bit LA is co-designed between the encoding algorithm and

the circuit design, which can enable a direct HESE SAR ADC design. The rules for
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L2R (left-to-right) HESE, start with NIAR

Binary representation:

L2R HESE derived SDR:

* *          * *   
0 1 1 0 0 1 1 0 0 0

1 0 1 0 1 0 1 0
Pad two 0’s2 bits LA:

Output digit:

Figure 3-3: The encoding looks at the current bit and the next 2 bits to decide the
encoded term. LA stands for look-ahead. Left to right (L2R) HESE SDR finds a
minimum-length SDR and red 1 stands for -1

Figure 3-4: Over 95% of the weights in a pre-trained AlexNet [2] can be represented
by only half of the HESE SDR terms due to bit-level sparsity
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Figure 3-5: An illustration of term quantization (TQ), which keeps the largest non-
zero 10 terms across a group of 5 data.

HESE SDR are shown in Figure 3-2. Figure 3-3 shows the illustration of the one-

pass HESE SDR encoding. Figure 3-4 shows the weight distribution of a pre-trained

AlexNet and terms distribution. HESE SDR can greatly reduce the non-zero terms

and thus increase sparsity.

3.2.3 Term Quantization

Term quantization (TQ) [1] prunes out small terms in a group of data, as shown

in Figure 3-5. TQ can increase the bit-level sparsity with a trivial impact on the

classification accuracy. For uniform quantization, all values are truncated uniformly.

TQ truncates the data in a group of data, which can keep more information

3.3 Contributions

The research introduced in this work is situated within the vast application space of

Artificial Intelligence of Things (AIoT) which has a significant potential for growth

in the future, particularly within the context of edge computing and long battery

life. The research aims to improve energy efficiency in AIoT devices such as Voice
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Activity Detection (VAD) and Keyword Spotting (KWS) systems which have a need

to be always-on and highly efficient in inference.

In order to address the energy efficiency issues in conventional AIoT systems, the

research explores certain features in these systems such as data sparsity in embedded

neural networks to improve energy efficiency.

A novel bit-level sparsity-aware successive approximation register (SAR) Analog-

to-Digital Converter (ADC) is proposed that directly produces Hybrid Encoding for

Signed Expressions (HESE). Coupled with term quantization, this approach increases

sparsity in Analog Neural Networks (ANNs). This direct HESE SAR ADC is the first

of its kind and can provide sparse encoding during the analog-to-digital conversion

process.

The research offers a unique approach to increase energy efficiency and sparsity

in ANNs. It holds practical implications for real-world scenarios where AIoT devices

are required to be always-on and efficient, making it a promising solution for future

AIoT developments.

3.4 Proposed Direct HESE SAR ADC

The global architecture of the proposed SAR ADC is shown in Figure 3-6. The

SAR ADC is split into two half DACs and two half-sized comparators to provide

two thresholds. The SAR ADC has two thresholds for each bit-cycling to perform

the 2-bit look-ahead (LA). Noise averaging between the two halves is performed in

the last couple of cycles to eliminate noise penalty due to half size DACs and com-

parators. Bottom-plate sampling is used and the sampling switches are bootstrapped

to enhance the linearity. The comparators are fully dynamic with no static power.

Two foreground calibration schemes are implemented to improve the linearity. One

is the bridge capacitor calibration [49]. The other is the 4 largest MSB capacitors

calibration [50].
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Figure 3-6: Global architecture of the proposed SAR is shown. Two DACs and
comparators are implemented for the 2-bit look-ahead (LA) of hybrid encoding for
signed expressions (HESE) SDR. Noise averaging (NA) is used to reduce the capacitor
size. The accumulated current is converted to the voltage by the sample and hold
circuitry.

3.4.1 Conversion Plan of the HESE SAR

Figure 3-7 shows the flow chart of the conversion plan. The ending states with padded

zeros are slightly different and are not drawn for simplicity. N stands for the current

bit under test.

ElseState = NIAR
Sample Vin

DU[N:N-2] = 100
DL[N:N-2] = 011 

DU[N:N-2] = 101
DL[N:N-2] = 100 

D[N] = CMPU
N--

CMPU = 0 & CMPL = 1

Else D[N] = CMPU - 1
N--

D[N] = 1

CMPU = 0 & CMPL = 1 D[N] = -1
NIAR

IAR

N == 0 ?

N == 0 ?

NO

NO
EOC

YES

YES

Figure 3-7: Flowchart of the conversion plan

The HESE SAR switches between the IN-A-RUN (IAR) and the NOT-IN-A-

RUN (NIAR) state when the input lies between two thresholds. The extra threshold
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provides the analog 2-bit look-ahead (LA) for direct HESE. VIN stands for the sampled

analog input for each conversion. VDACU stands for the analog output of upper DAC

and VDACL stands for the analog output of lower DAC.
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Figure 3-8: The HESE SAR starts in the NIAR state. DU[N:N-2] and DL[N:N-2] are
set to 100 and 011, respectively. The SAR can look for 2bit LA of two consecutive
1’s with this configuration. When CMPU is 0 and CMPL is 1, D[N] is encoded to 1
and the SAR switches to the IAR state.

The SAR starts with the NIAR state. As shown in Figure 3-8, DU and DL are

the digital inputs to the upper and lower DAC, respectively. In the NIAR state,

DU[N:N-2] and DL[N:N-2] are set to 100 and 011, respectively. The SAR can look for

2bit LA of two consecutive 1’s with this configuration. When CMPU is 0 and CMPL

is 1, D[N] is encoded to 1 and the SAR switches to the IAR state. Otherwise, D[N]

= CMPU.

In the IAR state, DU[N:N-2] and DL[N:N-2] are set to 101 and 100, respectively.

The SAR looks for 2bit LA of two consecutive 0’s. When CMPU is 0 and CMPL is 1,

D[N] is encoded to -1 and the SAR switches to the NIAR state. Otherwise, D[N] =

CMPU - 1.

When N = 1 or 0, the SAR enters the ending states. The ending states are slightly

different to handle the padded zeros. If N = 1 or 0 and the SAR is in the NIAR state,

the LA is not necessary and 2bit LA cannot be two consecutive 1’s because only zeros
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Figure 3-9: In the IAR state, DU[N:N-2] and DL[N:N-2] are set to 101 and 100,
respectively. The SAR can look for 2bit LA of two consecutive 0’s. When CMPU is
0 and CMPL is 1, D[N] is encoded to -1 and the SAR switches to the NIAR state.

are padded. If N = 1 and the SAR is in the IAR state, the current bit and next bit of

DU and DL are set to 11 and 10, respectively, to look for 2bit LA of two consecutive

0’s. If N = 0 and the SAR is in the IAR state, the encoded output is -1 regardless

of the outputs of the comparators due to the padded two zeros. The NIAR and the

IAR switch when CMPU is 0 and CMPL is 1. When LA is not necessary, the LDAC

and UDAC are connected in parallel to perform noise averaging.

Figure 3-10 shows an example conversion waveform of the HESE SAR. Only 6

MSBs are shown for simplicity. The conversion starts with the NIAR state. In the

first cycle, DU[11:9] is set to 100 and DL[11:9] is set to 011. If VIN is larger than

VDACL and smaller than VDACH, the 2bit LA is 11. The HESE SAR enters the

IAR state which would provide negative ones to increase sparsity. In the second cycle,

DU[10:8] is set to 101 and DL[10:8] is set to 100. VIN is larger than VDACU and the

HESE SAR stays in the IAR state. In the third cycle, VIN is within two thresholds

and the HESE SAR enters the NIAR state.

To reduce the sampled kT/C noise and the comparator noise, both the UDAC and

the LDAC are connected in parallel except for the dummy LSB capacitors in the last

two bit-cycles where LA is not necessary. Since both the UDAC and LDAC have 11-

46



1 2 3 4 5

Time/Cycle

1024

1280

1536

1792

2048

Q
ua

nt
iz

at
io

n 
Bo

un
da

rie
s/

LS
B

Cycle DU[11:6]
DL[11:6]

CMPU
CMPL

State

1 100000
011000

Lo
Hi NIAR

2 010100
100000

Hi
Hi IAR

3 011010
011000

Lo
Hi IAR

4 011100
011011

Hi
Lo NIAR

HESE Conversion Table

VIN

VDACU

VDACL

NOT-IN-A-RUN IN-A-RUN NOT-IN-A-RUN

Within two thresholds
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bit resolution, one more bit decision is required to provide an 12-bit result. The LSB

capacitors are separately actuated to provide 1 extra bit decision. Compared with

conventional SAR ADCs, no power/area/noise penalty is incurred in the proposed

direct HESE SAR ADC.

3.4.2 Sampling Network

A top-plate sampling network has several advantages over a bottom-plate sampling

network in a SAR ADC design [51]. The top-plate sampling network removes the

need for MSB capacitor in the CDAC. This brings significant area and energy saving.

The direct HESE SAR uses a bottom-plate sampling network to avoid the dis-

advantages of a top-plate sampling network to achieve 12-bit linearity. Firstly, the

sampling switch has a charge injection effect on the top-plate nodes of the CDAC

when ADC turns off its sampling switch [52]. This introduces a gain error since

the injected charge is a function of the ADC input voltage. The gain error can be

calibrated using background calibration technique [53]. The channel charge can also

result in nonlinearity since the threshold voltage of the sampling switch is a nonlinear

function of the ADC input voltage. This is caused by the back-gate effect. The charge

injection is constant because the sampling switch always sees the same voltage. The

charge redistribution is not affected on the top-plate nodes.

Secondly, the bottom-plate sampling removes the effect of charge sharing with the

parasitic capacitor on the top-plate node. For the top-plate sampling, the input is

charging the parasitic capacitor and the CDAC during sampling. However, during

the conversion the CDAC charge is shared with the parasitic capacitance. This causes

nonlinearity if the parasitic capacitance is nonlinear. This is caused by the nonlin-

ear sampling switch junction capacitor and the comparator input capacitor. For the

bottom-plate sampling, when the conversion is complete, the voltage across the para-

sitic capacitance returns to its initial condition reversing any charge sharing between

the CDAC and the parasitic capacitance. Therefore, the bottom-plate sampling does

not suffer from gain error or nonlinearity due to nonlinear parasitic capacitance.

As shown in Figure 3-11, bootstrapped switches are also used to achieve a 12-bit
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Figure 3-11: The schematic of the bootstrapped switch

resolution. The on-resistance of the sampling switch depends on the input voltage

level and this brings nonlinearity in high accuracy ADCs [54]. The RaM SAR boot-

straps the 𝑉𝐺𝑆 of its bottom-plate tracking switches with a charge-pump circuit [55].

The 𝑉𝐺𝑆 remains constant for all ADC inputs. The switches of the sampling network

are sized to make the largest input settling error lower than 0.01LSB. To reduce the

on-resistance of the sampling switches, the width of the sampling switches can be

increased.

M3 and M4 are for pre-charing the capacitor. During the pre-charge phase, the

capacitor is connected to the ground via M3 and VDD via M4. M1 and M2 are for

boosting the gate voltage. During the sampling phase, the source of M0 is connected

to the bottom plate of the capacitor via M1 and the gate of M0 is connected to the

top plate of the capacitor via M2. The other transistors are for reliability and control

signal generation. Note that M2 is PMOS and M0, M1, M5 and M6 are NMOS

transistors. M6 and M8 are needed to improve the circuit reliability.

The operation of the boosting switch is described below. EN is the enable signal.

When EN is high, the bootstrapped switch is on. When EN is low, the bootstrapped
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Pre-charge PMOS

Figure 3-12: The schematic of the dynamic comparator

switch is off. When EN is low, M3 and M4 are turned on. The top and bottom plates

of the capacitor are connected to supply voltage and ground, respectively. M7 is off

and M8 is on. The gate voltage of M2 is high and M2 is off. VBoost is connected to

the ground by M5 and M6. M0, M1, and M9 are off. When EN is high, M3 and M4

are off and the charge is stored in the capacitor. M5 is off and the VBoost is no longer

connected to the ground. M2 is on and the VBoot is boosted by the capacitor voltage.

Note that this circuit would generate a voltage level that’s higher than the supply

voltage. M9 and M6 are extra transistors to protect the M2 and M5, respectively.

Since the top plate of the capacitor can be larger than the supply voltage, the bulk

of M2 and M4 are connected to the top plate of the capacitor.

3.4.3 Comparator

Figure 3-12 shows the strong-arm latch of the SAR ADC [56]. The outputs are fed

into an RS-latch for the comparator output. For every bit-cycling, the comparator

determines the sign of the differential CDAC top plate voltage and passes the result

to the RaM SAR logic. The strong-arm latch has two NMOS pairs and one PMOS

pair. VP and VN are differential inputs from the top plate of CDACs. VP and Vn
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are connected to the differential NMOS input pair. The other NMOS pair and the

PMOS pair form a regeneration circuit.

When CLK is low, the tail NMOS is closed and the internal nodes are pre-charged

to VDD by PMOS. When the rising edge of CLK comes, the differential pair amplifies

the difference between the input voltages and convert the difference to current. The

regeneration pairs decide the outputs.

3.4.4 CDAC

Figure 4-1 shows the CDAC of the RaM-SAR ADC. The CDAC is split into two

capacitors arrays that are bridged by a bridge capacitor [57] to reduce area.

There are two main considerations for choosing the unit capacitance for the CDAC.

The total sampling capacitance should be large enough to suppress KT/C noise based

on the SNR target. The unit capacitor of the RaM-SAR is chosen to be 11.3fF.

For the layout, the CDAC uses the common centroid layout technique to suppress

the linear gradient effects [58]. The CDAC also uses the equal-edge-ratio layout

technique to increase the matching [59]. A p-well ground guardring surrounds the

entire CDAC to make the substrate below the CDAC quiet. Routing of the CDAC

is done carefully to ensure the symmetry and all the metal density rules are met

by manually placing ground-connected dummy metals. This avoids random dummy

metal insertion of the foundry.

3.5 Results

A prototype chip is fabricated in low-power 65nm technology. The chip micrograph

is shown in Figure 3-13. The prototype demonstrates direct sparse encoding along

with A/D conversion.

Figure 3-14 shows that the HESE SDR minimizes the non-zero terms compared

to the binary encoding. The HESE SDR can save up to 60% of the terms compared

to binary encoding.

Figure 3-15 shows the measured spectrum of the direct HESE SAR. The effective
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number of bits (ENOB) is 10.6b. Signal bins are highlighted. The sampling rate is

45MS/s. 16384 data points are used for FFT calculation. The input frequency is a

22.1MHz sine wave. The positive and negative outputs are read out separately and

reconstructed to binary representations for FFT calculation.

The HESE SAR is the first sparsity-aware SAR ADC to demonstrate direct spar-

sity encoding with competitive energy efficiency, resolution, and area.

3.6 Conclusion

This work is the first bit-level sparsity-aware ADC in ANNs with direct hybrid en-

coding for signed expressions (HESE) leveraging algorithm-circuit co-design. ANN

with HESE SAR minimizes the non-zero terms and enables a reduction in energy

along with the term quantization (TQ). A prototype in 65nm low-power technology

achieves Walden FoM of 15.2fJ/conv.-step at 45MS/s. The direct HESE SAR offers a
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general direction for the ADC design in ANNs leveraging bit-level sparsity. The core

area is 0.072mm2.
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Chapter 4

RaM-SAR: The first secure ADC for

high-speed applications

4.1 Introduction

The design and implementation of secure analog-to-digital converters (ADCs) have

become a crucial challenge in the field of integrated circuit design, especially in the

context of low-power, high-speed, and small form-factor systems such as those used in

IoT and wearable devices. The security of these systems is often threatened by side-

channel attacks, such as power analysis and electromagnetic (EM) analysis, which

can extract sensitive information from the power consumption or electromagnetic

emissions of the system.

To address this challenge, we present RaM-SAR, a secure random-mapping SAR

ADC that provides resistance against both power and EM side-channel attacks. RaM-

SAR is a 12-bit, 25 MS/s ADC with an energy consumption of 11.3 fJ per conver-

sion step. This is achieved through the use of a novel random-mapping technique,

where each conversion is randomly mapped to one of the thousands of conversion

sequences. This randomization of the power supply traces helps to protect against

neural network-based power and EM side-channel attacks.

The RaM-SAR ADC offers several advantages over prior works in the field of secure

ADCs. Firstly, it provides protection with much lower energy and area overheads
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compared to prior works. This is a significant advantage as it enables the integration

of secure ADCs into systems with limited power and space resources, such as IoT and

wearable devices. Secondly, the prototype RaM-SAR ADC, implemented in 65nm

CMOS, demonstrates significant improvements in terms of performance. It has a

12.5 times higher bandwidth and 4.8 times better energy efficiency compared to prior

secure ADCs. This makes the RaM-SAR ADC a competitive option for secure high-

speed data conversion applications.

A SAR ADC architecture is a popular choice for high-speed, low-power, and high-

resolution ADCs. The SAR ADC architecture is well-suited for the random-mapping

technique used in RaM-SAR as it can handle large numbers of conversion sequences

with low overhead. The random-mapping technique involves randomly selecting one

of the thousands of conversion sequences for each digital output, thus randomizing

the power consumption patterns and making it more difficult for attackers to extract

sensitive information.

To evaluate the performance of the RaM-SAR ADC, a prototype was implemented

in 65nm CMOS technology. The prototype was tested in a variety of scenarios to as-

sess its accuracy, speed, and energy consumption, as well as its resistance against

power and EM side-channel attacks. The results showed that the RaM-SAR ADC

achieved high accuracy with a 10.9 ENOB. It also demonstrated high-speed perfor-

mance, with a conversion rate of 25 MS/s. Additionally, the energy efficiency of 11.3

fJ per conversion step was found to be significantly lower than that of prior works,

making it suitable for low-power applications. The RaM-SAR ADC was found to

be resilient against power and EM side-channel attacks, with randomization of the

power supply traces making it difficult for attackers to extract sensitive information.

The RaM-SAR ADC presents a significant contribution to the field of secure

ADCs. It offers protection against power and EM side-channel attacks with much

lower energy and area overheads compared to prior works. The high accuracy, speed,

and energy efficiency of the RaM-SAR ADC make it a competitive option for secure

high-speed data conversion applications. The random-mapping technique used in

RaM-SAR provides a promising direction for future work in the field of secure ADCs
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The RaM-SAR reduces the area and energy overhead and increases the sampling

rate, which broadens the secure ADCs into video applications.

4.2 Contributions

This ADC has been specifically designed to provide resistance against both power and

electromagnetic (EM) side-channel attacks, which are typical threats to low-power,

high-speed, and small form-factor systems such as those used in IoT and wearable

devices.

The RaM-SAR ADC achieves security through a novel random-mapping tech-

nique. This process involves randomly mapping each conversion to one of thousands

of conversion sequences, which randomizes the power supply traces, making it more

difficult for attackers to extract sensitive information. This random-mapping tech-

nique is applied to a Successive Approximation Register (SAR) ADC architecture,

which is suitable for low-power applications.

Compared to prior works, the RaM-SAR ADC offers significant advantages in-

cluding lower energy and area overheads, which enables its integration into systems

with limited power and space resources. It also demonstrates significant performance

improvements, with a higher bandwidth and better energy efficiency compared to

prior secure ADCs.

The research also discusses the major leakage sources of unprotected SAR ADCs,

which include the CDAC, comparator, and SAR logic, and explains how the design

of RaM-SAR mitigates these leakage sources. The research presents a threat model

for ADC power and electromagnetic side-channel attacks and discusses the methods

for carrying out these attacks. The research also discusses Convolutional Neural

Network-based Power Side-Channel Attack (CNN-PSA) and Convolutional Neural

Network-based Electro-Magnetic Side-Channel Attack (CNN-EMSA), two proposed

side-channel attacks that leverage the power of convolutional neural networks.
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4.3 Proposed RaM-SAR

In this work, we propose an energy-efficient and high-speed secure SAR based on ran-

dom mapping (RaM-SAR) to randomize the conversion scheme (Figure. 2-3, right).

It is based on the LSB-first SAR [60]. LSB-first SAR saves energy when the signal

acitivty is low. In a typical case where the inputs are the same for consecutive sam-

ples, the LSB-first SAR finishes the conversion in 2 bit-cycles. Conversion energy for

redundant bit-cycles are saved. The LSB-first SAR has 3 phases, DIR, ToMSB, and

ToLSB phase. After sampling the input to the CDAC, the LSB-first SAR decides

the direction of the bit flipping in the DIR phase. The sampled input is compared to

the initial guess of the LSB-first SAR. The initial guess is set to the previous A/D

conversion to save energy in low-activity signals. For EEG, input change between

samples is usually much smaller than the full scale, and sometimes the input doesn’t

change between samples. During the DIR phase, the lower bound of the initial guess

is tested first. The upper bound of the initial guess is tested by flipping the dummy

LSB capacitor. If the input is larger than the initial guess, the test voltage is moving

up. If the input is smaller than the initial guess, the test voltage is moving down.

During the ToMSB phase, the test bits are flipped from LSB to MSB until the test

voltage overshoots the input. During the ToLSB phase, a conventional binary search

is conducted from the overshoot bit to the LSB.

The LSB-first SAR has different conversion switching sequences for each digital

output but it’s deterministic as the initial guess is always the previous digital out-

put. Therefore, the LSB-first SAR is not inherently safe from attacks. However, by

randomizing the initial guess instead, the conversion sequence for a given input is

also randomized. The LSB-first SAR needs up to 25 bit-cycles for a 12bit conversion,

which limits its usage in high sampling rate applications. As will be explained, the

RaM-SAR uses only 15 bit-cycles in the worst case. A RaM-SAR prototype fabricated

in a 65nm CMOS achieved a FoM of 11.3fJ/conv.-step.

Figure. 4-1 shows the single-ended version of the proposed RaM-SAR architecture

along with its block design. A differential version is implemented. The SAR ADC is
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Figure 4-1: Proposed RaM-SAR architecture and block diagram

split into two half DACs and two half-sized comparators to provide two thresholds.

Two comparators’ outputs are fed into the RaM-SAR logic. The DAC is controlled

by the logic output. Strong-Arm comparator is used. The sampling switches are

bootstrapped to increase the linearity.

Two thresholds reduce the worst-case number of cycles needed per conversion from

25 to 15. As in the direct HESE SAR ADC, noise averaging between the two halves

is performed in the last two bit-cycles to eliminate the noise penalty due to half-size

DACs and comparators. Therefore, there is no extra area/power overhead in this split

DAC design. Foreground calibration removes the effect of capacitor mismatches.

Figure. 4-2 shows example conversions of RaM-SAR. In the first phase (P1), the

differential input voltage is sampled onto the bottom plates of the CDAC (Figure.

4-3). DRND, the 11b pseudo-random number generated by on-chip linear feedback

shift registers, is set to the random start. The thresholds of the comparators are set

according to the random start. If both outputs of the comparators are high, then the

random start was too low, so the direction of bit-cycling DIR is set to 1 to increase the

thresholds. The inverse holds if both outputs of the comparators are low. The DIR

controls both extra LSBs. Otherwise, the random start is correct, and the RaM-SAR

combines the DACs for LSB decision as in Figure. 4-4.

The conversion sequence is randomized by the random start, which significantly

weakens the correlation between power/EM side-channel leakage and digital outputs.
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Figure 4-3: Flowchart of RaM-SAR
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The two-threshold, two half-DAC arrangement further randomizes the power supply

traces. R and S are two registors to support the conversion scheme. In the second

phase (P2), R and S are set to the index of the lowest one and two-bits of the random

start that are not currently set to DIR, respectively. Two thresholds make P2 faster

compared to [60]. Bit R for the lower DAC and bits S for upper DAC are inverted

to move in the desired direction. This is repeated until one of the outputs of the

comparators flips, indicating that the target value has overshot. The rest of the

MSBs are now finalized for this conversion. Let N be the current bit under test. The

conversion proceeds to the LSB in the Ternary Search Phase (P3) first and then the

Binary Search Phase (P4) if N is less than 3. In the P3, 3b conversion is finished in

2 bit-cycles. The bit-cycling continues as the ToLSB phase in [60] in the P4 and the

DACs are combined. When bit-cycling has gone back down to the LSB, conversion

is completed, and the DACs are purged.

Implementation of the circuit components including CDAC, comparator, and sam-

pling networks are identical to those of the direct HESE SAR ADC.
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4.4 Information Leakage source of the unprotected

SAR ADC

To understand the major leakage source of the unprotected SAR ADC, the rela-

tionships between the A/D conversion output and the power/EM leakage of CDAC,

comparator, and SAR logic are discussed.

CDAC is one of the three major leakage sources of the unprotected SAR ADC.

The switching energy correlates to the bit-decision result of the comparator [61]. The

second major leakage source is the comparator. Generally, the comparator consumes

more power as the differential input voltage becomes smaller. When the CLK in Fig-

ure 3-12 is high, the NMOS input pair takes more time to turn on the regeneration

pairs and the regeneration latch takes more time to resolve its outputs as the differ-

ential input becomes smaller. The third major leakage source is the unprotected SAR

logic. The logic consumes a different amount of power depending on the bit-decision

result. The logic leaks the entire A/D conversion result from MSB to LSB.

4.5 Neural-network-based ADC PSA and EMSA

4.5.1 Threat Model

The ADC PSA and EMSA are carried out by attackers who have physical access to the

same type of target ADCs for the profiled attacks. These attackers can gather power

or electromagnetic leakage from the ADCs, potentially compromising the security and

integrity of the data being processed. In this analysis, we will explore the intricacies

of these attacks and the challenges faced by both attackers and ADC designers in

protecting sensitive information.

For the ADC PSA, a resistor is inserted between the off-chip power supply and

the power supply pin of the ADC to measure the voltage drop across the resistor.

This method allows attackers to monitor the ADC’s power consumption and poten-

tially derive information about the A/D conversion process. Similarly, for the ADC
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EMSA, a sensitive EM current probe is positioned on top of the ADC for non-contact

measurement, capturing electromagnetic emissions from the ADC’s operation.

Profiled attacks are required for both ADC PSA and EMSA because the ADC leak-

age behavior is highly dependent on the specific circuit implementation. Identifying a

general model linking the side-channel leakage to the corresponding A/D conversion

for arbitrary ADCs can be challenging, necessitating the use of ADC-specific attack

approaches.

To execute a profiled ADC PSA, an attacker may procure a training ADC that

is nominally identical to the target ADC (e.g., an off-the-shelf product bearing the

same part number as the target ADC). Utilizing this training ADC, the attacker can

develop the ADC power analysis model by examining the relationship between the

power traces and the corresponding A/D conversion results. Since the training ADC

contains the same circuits as the target ADC, the developed power analysis model

can be employed to attack the target ADC. For testing RaM-SAR, we randomly

select a chip as the training ADC and attack three other chips for testing. Unlike

digital hardware (e.g., microprocessors or FPGAs) that can be easily updated to in-

corporate different algorithm implementations, most analog/mixed-signal circuits are

application-specific integrated circuits (ASICs) that cannot be modified after fabri-

cation or product release.

Although an attacker might be able to acquire a training ADC, it is reasonable

to assume that they will not have access to the transistor-level implementation de-

tails of the ADC. Manufacturers typically do not disclose such information in their

datasheets, and reverse engineering of integrated circuits (ICs) can be prohibitively

expensive. An ADC-specific power model is not practical. Neural-network-based

models are stronger because they can learn the correlation between the collected

traces and the corresponding A/D conversions.

Furthermore, the analog supply voltage (VDDA) and the digital supply voltage

(VDDD) are typically separated. This standard practice serves to shield sensitive

analog circuitry from its noisy digital counterpart. Attackers can exclude the dis-

turbance from the digital circuitry by only collecting traces from the VDDA. The
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IO supply voltage (VDDIO) is not available in a system-on-chip (SoC) environment,

as the ADC delivers its bits to the processor directly. Probing the VDDIO is not

practical.

4.5.2 CNN-PSA and CNN-EMSA

Analog-to-Digital Converter (ADC) Convolutional Neural Network-based Power Side-

Channel Attack (CNN-PSA) [16] and ADC Convolutional Neural Network-based

Electro-Magnetic Side-Channel Attack (CNN-EMSA) [8] are proposed side-channel

attacks that leverage the power of convolutional neural networks (CNNs). These

attacks are profiled attacks, consisting of two phases: the profiling phase and the

attacking phase. Both approaches employ similar conversion analysis models, but

they differ in their input formats. ADC PSA utilizes power traces, while ADC EMSA

relies on EM leakage. The objective of both attacks is to uncover the relationship

between the side-channel leakage and the corresponding A/D conversion outputs.

For the analysis model, one possible method is to draw upon domain knowledge

of ADC design for heuristic feature engineering. However, this can be an extremely

challenging task. The behavior of an ADC is highly dependent on its circuit imple-

mentation, and the detailed structure of the ADC is typically not publicly available.

Consequently, a data-driven solution emerges as a more promising approach. By an-

alyzing the collected leakage traces from the profiling phase, the CNNs autonomously

identify the most informative parts of the raw traces. This process is achieved by mini-

mizing the loss function using gradient descent and back-propagation algorithms. The

loss function quantifies the discrepancy between the parameterized analysis model and

the real model.

Our CNN architecture consists of frontend convolutional layers, max-pooling lay-

ers, and a flattened layer. Each convolutional layer contains five filters, with a filter

size of 5 and a stride of 1. The activation function employed is the Rectified Lin-

ear Unit (ReLU). Following each convolutional layer is a max-pooling layer, with a

pooling size and stride of 5 each. Our CNN architecture has 99.8 thousand trainable

parameters for each bit-wise CNN. For each bit-wise CNN inference, 643.6 thousand
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Figure 4-5: Testbench Diagram

of floating-point operations are needed.

4.6 Measurement Results

The testbench diagram is shown in Figure 4-5 and the measurement setup is shown

in Figure 4-6. An FPGA board (Opal Kelly XEM6001) was used to communicate

with the ADC test chip. This involves sending the NRST, CONF and CAL signals

to reset the chip, configure the ADC mode, send calibration codes, and receive the

output codes. 3 SourceMeters (Keithley 2400) were used to monitor the chip’s core

power consumption. A decoupling capacitor of 0.1uF was used on each supply node.

An arbitrary waveform generator (Tektronix AFG3102) is used to generate the ADC
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Figure 4-6: Photo of the setup

input signal and band-pass-filtered (from KR Electronics) for harmonics reduction.

Then, the filtered signal is fed into a balun (Mini-Circuits ADTT1-6+) for single-

ended to differential conversion. A low-jitter clock source (SRS CG635) supplies the

SAR ADC clock signal. An oscilloscope with an integrated logic analyzer (Tektronix

MDO3024) captures the ADC and the power traces for PSA. A QFN60 socket (3M

260-4204-01) is employed to facilitate the chip measurement process. On-board LDOs

(Linear Technology LT3021) supply power to the SAR ADC. A stand is used to hold

the EM Probe (LANGER). The signal from the probe is amplified and recorded by

the aforementioned oscilloscope.

Fabricated in the 65nm LP process, the RaM-SAR takes 0.072mm2 (Figure. 4-

7). The fabricated chips are wire-bonded in 60pin QFN package. The prototype

demonstrates significant improvements with 12.5× higher bandwidth and 4.8× better
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Figure 4-7: Chip micrograph

Figure 4-8: FoM vs Speed
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Figure 4-9: Power/EM attacks of unprotected vs. protected mode of the RaM-SAR
ADC
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Figure 4-10: Example image of PSA on the protected SAR ADC
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Figure 4-11: Example image of PSA on the unprotected SAR ADC
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Figure 4-12: Example image of EMSA on the protected SAR ADC

71



Figure 4-13: Example image of EMSA on the unprotected SAR ADC

72



0 0.1 0.2 0.3 0.4 0.5
F/Fs

-120
-100
-80
-60
-40
-20
0

dB
c

SNDR=67.53B
Fs=25MS/s
Fin=12.4MHz
NFFT=16384

Figure 4-14: Measured FFT plot of RaM-SAR

Figure 4-15: Measured DNL/INL of the unprotected mode SAR ADC

73



energy efficiency over prior secure ADCs (Figure. 4-8). The sampling rate of RaM-

SAR is 25MS/s and the FoM is 11.3 fJ/c.-s. The sampling rate of [32] is 1.25MS/s

and the FoM is 150 fJ/c.-s The sampling rate of [8] is 2MS/s and the FoM is 120.7

fJ/c.-s. The sampling rate of [16] is 1.25MS/s and the FoM is 54.3 fJ/c.-s.

In our experiment, we performed Convolutional Neural Network (CNN) based

Power Side-Channel Attacks (PSA) and Electro-Magnetic Side-Channel Attacks (EMSA)

against both unprotected and protected Analog-to-Digital Converters (ADCs), as il-

lustrated in Figure 4-9. The CNN-based side-channel attacks involve the collection

of 500,000 samples from a ramp signal, as demonstrated in [16], on a training ADC.

These samples are then used to perform the attack on three other ADCs, each with

50,000 samples collected for various input signals.

The unprotected mode relies on a fixed initial guess, in contrast to the random

initial guess employed in the protected mode. To conduct the VDD-side PSA, we

measured the current profile of the VDD pin by connecting it with a 30ohm series

resistor. Similarly, for the GND-side PSA, the current profile of the GND pin was

collected using a 30ohm series resistor. For the EMSA, the electromagnetic profile of

the chip was gathered using an EM probe placed near the ADC.

Different CNN models were utilized for separate bits in the ADC. The bit-wise

accuracy with a ramp input was calculated as an average across the three tested

ADCs. To evaluate the Root Mean Square (RMS) error, the error was normalized

with respect to the full scale of a 12-bit ADC.

We conducted tests on various input signals, including ramp, Electrocardiogram

(ECG), image, and sine waves. These diverse inputs allowed us to thoroughly eval-

uate the performance and security of both unprotected and protected ADCs under

different conditions. Our experiment aimed to demonstrate the effectiveness of the

protection mechanisms implemented in the secure ADC, as well as identify any po-

tential weaknesses or vulnerabilities that could be exploited by adversaries using

CNN-based side-channel attacks.

By comparing the outcomes of these tests, we aimed to gain insights into the

relative security and performance of unprotected and protected ADCs. This informa-
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tion can help guide future design improvements and contribute to the development

of more secure and efficient ADCs for various applications. The results of our experi-

ment demonstrate the effectiveness of the secure ADC in preventing CNN-based PSA

and EMSA, while still maintaining high performance and energy efficiency.

Figure. 4-9 demonstrates the effectiveness of our protection scheme in safeguard-

ing the ADC against VDD-side PSA, GND-side PSA, and EMSA. In evaluating the

bit-wise accuracy of the ADCs, a 100% accuracy indicates that the attack algorithm

accurately guesses the digital bit 100% of the time, meaning that the ADC is not

secure. Conversely, a 50% accuracy implies that the attack algorithm performs at the

same level as a random selector, signifying that the ADC is secure.

D11 represents the Most Significant Bit (MSB), while D0 denotes the Least Sig-

nificant Bit (LSB). When assessing the unprotected ADC under VDD-side PSA, we

observed that the bit accuracy exceeded 99% for bits D3 through D11 and surpassed

90% for bits D0 to D2. This outcome reveals that the unprotected ADC is not secure

under VDD-side PSA.

However, for the protected ADC under VDD-side PSA, the bit accuracy hovered

around 50% for all bits except the MSB. This result indicates that the protected ADC

is secure under VDD-side PSA. In the case of the unprotected ADC under GND-side

PSA, the bit accuracy approached 100% for the majority of bits, suggesting that the

unprotected ADC is not secure under GND-side PSA.

On the other hand, for the protected ADC under GND-side PSA, the bit accuracy

remained around 50% for all bits except the MSB, confirming that the protected ADC

is secure under GND-side PSA. For the unprotected ADC subjected to EMSA, the

bit accuracy was nearly 100% for most bits, indicating that the unprotected ADC is

not secure under EMSA.

In contrast, for the protected ADC under EMSA, the bit accuracy was approx-

imately 50% for all bits, including the MSB. This finding demonstrates that the

protected ADC is secure under EMSA. The results of our study highlight the impor-

tance of incorporating a robust protection scheme into ADC designs to ensure their

security against various side-channel attacks.
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As part of the evaluation process, an example image is fed into the ADCs to

assess the efficacy of the protection mechanism in preserving the confidentiality of

the input data. This approach allows us to evaluate the performance of the ADCs

under realistic conditions and determine their susceptibility to side-channel attacks.

After conducting the EMSA on the unprotected ADC, the attacker can clearly

discern the image’s content, featuring a man with a camera, as shown in Figure 4-13.

However, when examining the protected ADC, the attacker can only observe random

noise, as depicted in Figure 4-10. In contrast, with the protection enabled, the EMSA

result appears to be random and does not disclose any useful information about the

original image, as demonstrated in Figure 4-12.

Further evaluation of the ADC’s performance reveals a Spurious-Free Dynamic

Range (SFDR) of 86.6dB, as shown in Figure 4-14. The Differential Non-Linearity

(DNL) measures -0.49/+0.35LSB, while the Integral Non-Linearity (INL) is -0.76/+0.67LSB

4-15.

The ADC achieves a FoM of 11.3fJ/c.-s, which is comparable with the state-of-the-

art energy-efficient non-secure ADCs [62][63], with both PSA and EMSA resilience

(Figure. 4-16). The energy efficiency of the secure ADC can still be improved.
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Figure 4-16: Comparison Table
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Chapter 5

Sniff-SAR: Detection-driven and

un-trainable secure ADC

5.1 Introduction

One of the main challenges in designing secure ADCs is balancing the trade-off be-

tween security and energy efficiency. Secure ADCs often have non-negligible energy

and area overheads, which is not ideal for resource-constrained IoT applications. The

protection schemes in secure ADCs are typically always-on, even when side-channel

attacks are not being performed.

Another challenge is the increasing power of neural network-based side-channel at-

tacks, which render existing protection mechanisms less robust. To address these chal-

lenges, this work proposes the first detection-driven secure ADC that protects against

both power and EM side-channel attacks. The ADC operates in an energy-efficient

switching mode under normal conditions. When an EMSA or PSA is detected, a

secure switching mechanism is enabled, rendering the ADC practically untrainable

by neural network-based attacks.

The proposed detection-driven secure ADC [64] offers several advantages. First,

it reduces the energy and area overheads associated with conventional secure ADCs

by only activating the secure switching mechanism when an attack is detected. This

makes it more suitable for resource-constrained IoT applications. Second, the secure
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Figure 5-1: Side-channel security challenges of ADCs and detection-driven protection
based on randomization
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switching mechanism is designed to be resistant to neural network-based side-channel

attacks, ensuring a higher level of security.

To implement the detection-driven secure ADC, several design considerations must

be taken into account. The detection mechanism should be able to accurately identify

both EMSA and PSA with minimal false positives and negatives. Additionally, the

secure switching mechanism must be carefully designed to prevent information leakage

while maintaining the ADC’s performance.

The detection-driven secure ADC offers a promising solution for addressing the

challenges associated with securing ADCs in resource-constrained IoT applications.

By operating in an energy-efficient switching mode and activating the secure switch-

ing mechanism only when an attack is detected, the proposed ADC reduces energy

and area overheads while providing robust protection against both power and EM

side-channel attacks. Moreover, by leveraging machine learning techniques for attack

detection and designing secure switching mechanisms that are resistant to neural

network-based attacks, the detection-driven secure ADC offers a higher level of secu-

rity and robustness for IoT applications.

5.2 Previous Work

Recently, detection-driven techniques have been proposed to reduce the overhead of

side-channel attack resiliency. [65] introduces EQZ-LDO, an innovative digital low

drop-out regulator (LDO) with equalizer designed to provide resilience against side-

channel attacks (SCAs). A key feature of the proposed solution is its attack detection

capability, combined with a detection-driven protection mechanism. This approach

ensures that the protection system is activated only when an SCA is detected. As a

result, the energy-delay-product (EDP) overhead is minimized, amounting to a mere

0.5% increase.

In the context of Internet of Things (IoT) devices, the EQZ-LDO offers an efficient

and effective means of enhancing security. By spreading the EDP overhead across

the device’s lifetime, it enables a more sustainable approach to resource allocation.
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In addition, the detection-driven protection scheme ensures that performance is not

compromised during periods when no attacks are occurring.

The EQZ-LDO digital low drop-out regulator offers a powerful solution for SCA

resilience in IoT devices. Its unique combination of attack detection and detection-

driven protection allows it to provide strong security without significant EDP over-

head. This approach ensures that both performance and security are effectively bal-

anced, making it an attractive option for IoT device developers and manufacturers

seeking to protect their products from side-channel attacks. Secure ADC can take a

similar concept to reduce the overhead of the security feature. However, the EQZ-

LDO cannot protect against EMSA.

EMSA is a more practical approach to capturing the side-channel information of

the ADCs. [66] presents the development of a cryptographic engine (CE) designed to

resist local electromagnetic analysis attacks (L-EMAs). The core of this innovative

solution is an LC-oscillator-based tamper-access sensor that detects the approach of

a micro EM probe, ensuring the protection of secret key information from potential

attacks.

The fully-digital sensor circuit features a reference-free dual-coil sensing scheme

and a ring-oscillator-based one-step digital sensor calibration. These design elements

contribute to a reduced sensor area overhead of just 1.6%. Furthermore, the sen-

sor is designed to operate intermittently, interleaving between CE operations. This

approach allows for power savings and minimizes performance penalties, with power

consumption reduced by 7.6% and performance penalty limited to 0.2%.

The development of a cryptographic engine resistant to local EM-analysis attacks

represents a significant step forward in the field of cybersecurity. The use of an LC-

oscillator-based tamper-access sensor, combined with a fully-digital sensor circuit and

an intermittent operation mode, ensures that secret key information remains secure

while minimizing overhead and performance penalties. The successful demonstration

of L-EMA attack detection and key protection in a prototype highlights the potential

of this approach in securing cryptographic systems against increasingly sophisticated

attacks.

82



Figure 5-2: System architecture of the side-channel-secure ADC with detection-driven
protection

The proposed work integrates the PSA [65] and EMSA [66] detectors into a SAR

ADC (Sniff-SAR) with minor modifications. The Sniff-SAR operates in an energy-

efficient mode and provides secures conversions only when PSA or EMSA is detected,

which reduces the overhead of secure ADCs.

5.3 Contributions

This research proposes a novel ADC design, known as Sniff-SAR, that enhances secu-

rity in resource-constrained IoT applications by balancing energy efficiency and pro-

tection against side-channel attacks. The Sniff-SAR uses a detection-driven approach

to combat electromagnetic side-channel attacks (EMSA) and power side-channel at-

tacks (PSA). Under normal conditions, the ADC operates in an energy-efficient mode,

but when a threat is detected, it switches to a secure mode, reducing energy and area

overheads associated with conventional secure ADCs.

The EMSA and PSA detectors within the ADC core monitor for side-channel

attacks and activate the secure mode when necessary, providing robust protection.

The ADC’s secure mode employs a unique conversion plan that leverages a random
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number generator, making it resistant to side-channel attacks and impractical for

training neural network-based attacks.

The Sniff-SAR builds upon previous work, integrating PSA and EMSA detectors

into a SAR ADC with minor modifications. The design also maintains high perfor-

mance and energy efficiency by operating in an energy-efficient mode under normal

conditions and only activating the secure mode when an attack is detected.

The resulting prototype can detect a 30-ohm series resistor for PSA and an EM

probe at a distance of 0.16mm for EMSA, demonstrating its robustness against secu-

rity threats. This detection-driven secure ADC design provides a promising solution

for secure, energy-efficient ADCs in IoT applications.

5.4 Proposed Sniff-SAR

5.4.1 Architecture

Figure. 5-2 shows the system architecture of the Sniff-SAR with detection-driven pro-

tection. The EMSA and PSA detectors capture the attempt of side-channel attacks.

The ADC core performs the analog-to-digital conversion. The ADC core normally

operates in the unprotected SAR mode which is faster and more energy efficient.

EMSA and PSA detectors check for side-channel attacks periodically and once they

notice that the ADC is under attack, the ADC activates the secure SAR mode against

both EMSA and PSA.

Figure 5-2 presents the system architecture of the Sniff-SAR, featuring detection-

driven protection. This architecture consists of two primary components: the attack

detectors and the ADC core.

The EMSA and PSA detectors are responsible for monitoring and detecting at-

tempts of side-channel attacks. These detectors periodically check for any signs

of Electro-Magnetic Side-Channel Attacks (EMSA) or Power Side-Channel Attacks

(PSA), which could threaten the security of the ADC.

The ADC core is responsible for performing the A/D conversion process. Under
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normal operating conditions, the ADC core functions in the unprotected SAR mode,

which offers higher sampling speed and greater energy efficiency compared to the

secure SAR mode. This allows the Sniff-SAR to conserve resources and maintain

optimal performance when not under attack.

When the EMSA and PSA detectors identify a side-channel attack attempt, the

ADC activates the secure SAR mode to counter both EMSA and PSA threats. This

mode introduces additional security measures and countermeasures to protect sensi-

tive information and maintain the integrity of the ADC’s operation.

By implementing this detection-driven protection, the Sniff-SAR achieves a bal-

ance between performance and security. The ADC can operate efficiently in the

unprotected SAR mode when no attacks are detected, reducing energy consumption

and ensuring optimal performance. However, when an attack is detected, the ADC

can swiftly transition to the secure SAR mode, providing robust protection against

both EMSA and PSA without compromising the ADC’s overall performance.

The Sniff-SAR’s detection-driven protection offers a flexible and efficient solution

for safeguarding ADCs in resource-constrained IoT applications. By operating in

an energy-efficient mode and activating secure SAR mode only when necessary, the

Sniff-SAR can effectively protect against both EMSA and PSA while maintaining high

performance and energy efficiency. The core circuitry including CDAC, comparator,

and sampling networks is identical to the RaM-SAR.

5.4.2 Attack Detectors

To detect electromagnetic side-channel attacks (EMSA), the ADC core employs dual

sensor coils, L1 and L2, placed over the core to form two LC oscillators [66]. When an

EM probe approaches the ADC, the oscillation frequencies of the two LC oscillators

diverge. Digital counters in the control logic detect this divergence and activate the

secure successive approximation register (SAR) mode in the ADC, offering enhanced

protection against EMSA.

The sensor coils are implemented in two distinct metal layers, providing orthogonal

edges to cover multiple attack vectors. Local ring oscillators serve as a process,
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voltage, and temperature (PVT) monitor to calibrate the LC oscillators, eliminating

the need for an external clock reference, as shown in [66].

In addition to the EMSA detector, the design includes a power side-channel attack

(PSA) detector. The PSA detector generates a current pulse to sense the IR drop

across the non-negligible resistance employed for PSA detection. This IR drop is

amplified by a common-gate, subthreshold-biased PMOS array [65]. The PMOS

array is biased by an embedded 2T voltage reference [65].

The amplifier is designed to deliver a DC gain of 30dB and a unity-gain bandwidth

of 350kHz, effectively suppressing mid-to-high frequency supply noise. When the

amplified voltage falls below a predetermined Vdetect threshold, the PSA detector

interprets it as a PSA attempt and activates the secure SAR mode in the ADC core,

enhancing the overall security against power side-channel attacks.

The key features of the Sniff-SAR include an ADC core, dual sensor coils for

EMSA detection, and a dedicated PSA detector. These components work together

to enhance the security of the ADC core without incurring additional area or power

overhead. The innovative approach demonstrated in this work has the potential to

significantly improve the resilience of ADCs and other electronic systems against

increasingly sophisticated side-channel attacks, ensuring the confidentiality and in-

tegrity of sensitive information in various applications.

5.4.3 Conversion Plan

The secure mode offers 3.6 x 1016 unique switching traces using a true random number

generator, which makes it highly resistant to side-channel attacks, including PSA

and EMSA. To put this into perspective, it would take approximately 2,900 years to

collect all possible switching traces at 100 times each, with a sampling rate of 40 Mega

Samples per second (MS/s). Consequently, training an ADC using neural networks

to perform PSA or EMSA would be impractical in this case. Pseudorandom number

generator is used to prove the concept.

The secure SAR ADC consists of three phases: random start, search, and LSB.

The DU and DL registers correspond to the UDAC and LDAC, respectively. The
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Figure 5-3: DAC schematic and flowchart of the secure SAR

random start phase begins with the DU register set to a pseudo-random number

(DRND) between half of the Full Scale (FS) and the FS. The DL register is then set

to half FS below DU. The upper bound (U) and the lower bound (L) of the Range

of Uncertainty (R) are initially set to FS and 0, respectively.

CMPU and CMPL denote the outputs of the upper and lower comparators, re-

spectively. The values of U, L, and R are updated according to CMPU and CMPL.

If CMPU equals 0 and CMPL equals 1, the input voltage lies between DU and DL,

so U and L are set to DU and DL, respectively. If CMPU and CMPL both equal 1,

the input voltage is larger than DU, and L is updated to DU. If CMPU equals 0 and

CMPL equals 0, the input voltage is smaller than DL, and U is updated to DL. The

Range of Uncertainty (R) is updated accordingly.

In the search phase, DU is set to a pseudo-random number (DRND) larger than

both the center of the Range of Uncertainty and U. The DL register is set to 0.5R

below DU. If R falls below 2, the secure SAR enters the final LSB phase.
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During the LSB phase, the UDAC and LDAC are combined to make a binary

decision. It is worth noting that the unprotected SAR ADC utilizes ternary search,

which allows for three-bit decisions in only two cycles. This process enhances the

performance and efficiency of the ADC.

The prototype is capable of detecting a 30-ohm series resistor for PSA and an EM

probe at a distance of 0.16mm. The maximum detectable probe distance is accurately

measured using a 3D positioning stage. This design ensures that the detector can

identify even subtle variations in the probe’s position, significantly enhancing the

security of the ADC against electromagnetic attacks.

The quiescent power consumption of the EMSA and PSA detectors is 21µW and

1.1µW, respectively, which demonstrates the energy-efficient operation of these de-

tectors. Such low power consumption is crucial for the practical implementation

of these security features in various applications, particularly in power-constrained

environments such as Internet of Things (IoT) devices.

5.5 Measurement Setup

In this experiment, as depicted in Figure. 5-4, we used a comprehensive measurement

setup to ensure the accuracy of the results. The foundation of the setup is an optical

breadboard (B1824FX), which provides a stable platform for positioning the test PC

board and the positioning stage. To enhance the precision of the positioning stage,

an MT405 adapter is utilized.

A crucial component of this setup is the KDC101 motor controller, responsible

for the accurate 3D positioning of the EM probe. This allows for precise control and

movement of the probe to obtain reliable measurements. To facilitate communication

between the PC and the motor controller, a KCH301 USB controller hub and power

supply are employed.

Furthermore, the MT3-Z8 three-axis motorized translation stage plays a vital role

in holding the EM probe securely in place. This ensures that the probe remains stable

during the experiment, minimizing potential errors or inaccuracies.
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Figure 5-4: Measurement Setup
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Figure 5-5: Die micrograph

5.6 Measurement Results

Figure. 5-6 demonstrates the effectiveness of our protection scheme in safeguarding

the ADC against VDD-side PSA, GND-side PSA, and EMSA. The bit-wise accuracy

for unprotected mode is close to 100% and the bit-wise accuracy for protected mode is

close to 50%. This means that in the unprotected mode, the attacker can acquire the

digital output accurately. For the protected mode, the ADC offers strong protection.

The Sniff-SAR is designed using the 65nm LP process. The ADC features a

compact footprint, occupying only 0.075mm2 as shown in Figure. 5-5. In comparison

to previous work [7], which employed always-on protection, the Sniff-SAR introduces a

detection-driven protection mechanism that is both energy-efficient and highly secure.

A unique switching scheme has been implemented in the Sniff-SAR, making it

virtually untrainable using neural networks. This significantly enhances the ADC’s

resistance against advanced side-channel attacks. By incorporating duty cycling for

both EMSA and PSA detectors, the Sniff-SAR achieves the highest sampling rate

and best figure of merit (FoM) among secure ADCs.

The secure SAR mode of the Sniff-SAR has an FoM of 9.8fJ/conversion-step,

which is comparable to state-of-the-art energy-efficient unprotected ADCs using simi-

lar technology. This remarkable performance highlights the potential of the Sniff-SAR
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Figure 5-6: Power/EM attacks of unprotected vs. protected mode of the Sniff-SAR
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Figure 5-7: Performance summary and comparison with the state-of-the-art secure
ADCs and energy-efficient ADCs

to provide both security and energy efficiency in a wide range of applications.

To evaluate the performance of the secure SAR mode, an example image 5-10

is fed into the Sniff-SAR ADC. The obtained results (Figure. 5-12) show that with

the protection enabled, the EMSA outcome appears almost random and does not

reveal any useful information about the original image. This indicates that the secure

SAR mode effectively protects the ADC from side-channel attacks when compared to

unprotected SAR.

The Sniff-SAR successfully detects and protects against both power and electro-

magnetic side-channel attacks. The low power consumption of the EMSA and PSA

detectors, combined with the effective performance of the secure SAR mode, demon-

strates the potential of this design to enhance the security and resilience of electronic

systems in a wide range of applications.
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Figure 5-8: Measured output spectra of the secure SAR

Figure 5-9: Measured DNL/INL of the unprotected mode SAR ADC after calibration
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Figure 5-10: Example image
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Figure 5-11: EMSA result on the unprotected SAR ADC
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Figure 5-12: EMSA result on the protected SAR ADC
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Chapter 6

Conclusions and Future Work

As the concluding chapter, this chapter discusses the contributions of the thesis and

suggests future research directions.

6.1 Thesis Contributions

6.1.1 Direct HESE SAR

This research presents a sparsity-aware analog-to-digital converter (ADC) for ana-

log neural networks, specifically a bit-level sparsity-aware SAR ADC that directly

produces Hybrid Encoding for Signed Expressions (HESE). The primary goal of the

ADC is to support large artificial neural networks (ANNs) while maintaining high

accuracy. With a 12-bit resolution, the HESE ADC is designed to efficiently process

data, capitalizing on the sparsity inherent in the neural networks.

The HESE ADC employs a unique architecture that incorporates two thresholds

for 2-bit look-ahead (LA) functionality, which facilitates more efficient processing by

anticipating the next two bits of the data. Additionally, noise averaging (NA) is

implemented during the final two bit-cycles of the ADC’s operation, reducing the

impact of noise on the overall performance of the system.

The proposed sparsity-aware ADC has significant advantages over traditional

ADCs, particularly in the context of large-scale ANNs. By exploiting sparsity in
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the data, the HESE ADC can achieve improved efficiency, leading to reduced power

consumption and faster processing times. This is essential for modern applications,

such as machine learning and artificial intelligence, where rapid and efficient data

processing is crucial. The HESE SAR ADC exhibits a figure of merit (FoM) of 15.2

fJ/conv.-step when operating at 45MS/s with a core area of just 0.072mm².

6.1.2 RaM-SAR

ADCs are susceptible to side-channel attacks, where adversaries exploit the correlation

between power consumption or electromagnetic emissions and the A/D conversion to

extract sensitive information. To tackle this challenge and enhance the security of

ADCs, we introduce the RaM-SAR

RaM-SAR is a secure random-mapping SAR ADC that offers robust resistance

against both power and electromagnetic side-channel attacks. This 12-bit, 25 MS/s

ADC achieves an energy consumption of only 11.3 fJ per conversion step, making it

suitable for energy-constrained applications. The key to RaM-SAR’s heightened se-

curity is a unique random-mapping technique that randomly assigns each conversion

to one of the thousands of different conversion sequences. This randomization effec-

tively disrupts the predictable patterns that adversaries rely on to perform successful

side-channel attacks, thereby safeguarding sensitive data.

The random-mapping technique used in RaM-SAR is designed to provide com-

prehensive protection against various side-channel attacks, including both power and

electromagnetic attacks. By disrupting the correlations between the leaked signals

and the internal operations of the ADC, RaM-SAR can thwart neural network-based

power and electromagnetic side-channel attacks, which are becoming increasingly so-

phisticated and challenging to defend against.

The low energy consumption per conversion step enables RaM-SAR to be em-

ployed in a wide range of applications where power constraints are a critical consider-

ation. Moreover, the 25 MS/s sampling rate ensures that RaM-SAR can deliver the

performance required for high-speed data acquisition and processing tasks.

The innovative design of RaM-SAR is an attractive solution for enhancing the

98



security of ADCs in IoT and wearable devices. By incorporating RaM-SAR into

these systems, designers can provide a crucial layer of protection against increasingly

sophisticated side-channel attacks, ensuring the privacy and integrity of sensitive data.

6.1.3 Sniff-SAR

As the demand for secure ADCs has grown, there has been an increasing need for

ADCs that can detect and defend against power and electromagnetic (EM) side-

channel attacks. In response to this challenge, we have developed Sniff-SAR, an inno-

vative 9.8 fJ/conversion-step, 12-bit secure ADC designed to offer robust protection

against side-channel attacks through the use of EMSA (electromagnetic side-channel

analysis) and PSA (power side-channel analysis) detectors.

Under normal circumstances, the ADC core of Sniff-SAR performs the analog-to-

digital conversion process while operating in an unprotected SAR (successive approx-

imation register) mode. This mode is both faster and more energy-efficient compared

to the secure mode, making it the default choice for routine operation. However,

Sniff-SAR’s EMSA and PSA detectors periodically scan for signs of side-channel at-

tacks. Upon detecting a potential threat, the ADC automatically activates its secure

SAR mode, which is specifically designed to defend against both EMSA and PSA

attacks.

The secure SAR mode of Sniff-SAR offers an extraordinary degree of protection,

generating 3.6 x 1016 different switching traces. This vast number of traces makes it

practically infeasible for attackers to train neural networks for PSA or EMSA attacks.

The development of Sniff-SAR is an important milestone in the pursuit of secure

ADCs, offering a versatile solution that can significantly enhance the security of a

broad range of electronic systems. The innovative features of Sniff-SAR, such as its

detection-driven protection and secure SAR mode, ensure that it remains a formidable

defense against side-channel attacks.

Furthermore, the flexible and adaptable nature of Sniff-SAR allows it to be easily

integrated into existing systems and technologies. This seamless compatibility makes

Sniff-SAR an appealing choice for designers looking to improve the security of ADCs
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in electronic systems, ranging from IoT devices to wearable technology and beyond.

Sniff-SAR represents a significant advancement in the field of secure ADC de-

sign. By incorporating detection-driven protection against side-channel attacks and

utilizing a secure SAR mode that produces an enormous number of switching traces,

Sniff-SAR offers an effective and adaptable solution for enhancing the security of

ADCs across a wide array of electronic systems. With its combination of energy

efficiency, speed, and compatibility with existing technologies, Sniff-SAR has the po-

tential to play a pivotal role in the ongoing quest to safeguard sensitive data and

protect against increasingly sophisticated side-channel attacks.

6.2 Future directions

6.2.1 SCA with different Neural Networks for time series data

Previous Neural-Network-Based ADC SCAs are mostly using CNNs and MLP. CNNs

are more powerful than MLP in various image tasks. CNNs are a specialized class of

neural networks that have proven to be highly effective in solving problems associated

with spatial data, such as images. CNNs have gained widespread popularity in the

field of computer vision due to their ability to automatically learn features from raw

image data and their capability to achieve state-of-the-art performance in various

image recognition and classification tasks. The key component of a CNN is the

convolutional layer, which performs local operations on the input data to learn spatial

hierarchies and capture spatial patterns. This property makes CNNs particularly

well-suited for processing images and other grid-like data structures.

On the other hand, Recurrent Neural Networks (RNNs) [67] are specifically de-

signed to address problems involving temporal or sequential data, such as text, speech,

and time series. The ADC leakage traces are time series. RNN-based ADC SCA can

be more powerful than CNN-based ADC CSA. RNNs possess a unique architecture

that allows them to maintain internal states and capture dependencies across variable-

length sequences. This is achieved through the incorporation of recurrent connections,
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which enable information to persist across time steps, allowing the network to model

complex temporal relationships. RNNs have found numerous applications in natural

language processing, speech recognition, and various sequence prediction tasks.

Transformers [68] can take the ADC SCA a step further. Transformers have

emerged as a highly efficient alternative to RNN-based models, such as Long Short-

Term Memory (LSTM) networks when it comes to handling sequential data. One

key advantage of transformers over RNNs is their ability to process the entire ADC

leakage sequence in parallel, rather than sequentially. This is made possible by the

self-attention mechanism employed by transformers, which allows them to directly

capture dependencies between all pairs of tokens in the leakage sequence, irrespective

of their positions. As a result, transformers can achieve significantly faster processing

speeds compared to RNN-based models, which must process input data sequentially,

making it challenging to fully exploit the parallel computing capabilities of modern

hardware like GPUs.

Training LSTMs can be more difficult in comparison to transformer networks,

mainly due to the higher number of parameters typically involved in LSTM net-

works. LSTMs rely on gating mechanisms to control the flow of information through

their hidden states, which necessitates additional learnable parameters for each gate.

These parameters not only increase the complexity of the model but can also lead

to issues such as vanishing or exploding gradients, making it challenging to optimize

the network during training. Moreover, the inherently sequential nature of LSTMs

can result in longer training times, as they cannot fully leverage the benefits of par-

allelization.

In contrast, transformer networks usually have a more streamlined architecture,

characterized by a lower number of parameters and a greater capacity for paralleliza-

tion. These factors contribute to more efficient and effective training, enabling trans-

formers to converge faster and often achieve superior performance on various tasks.

The success of transformer-based models, such as BERT [69] and GPT-3 [70], has

further demonstrated their ability to outperform RNN-based models in many natural

language processing tasks, solidifying the transformer as the state-of-the-art architec-
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ture for sequential data processing. It is promising to use transformer networks for

ADC SCA. Far-field EMSA can be enabled with transformer networks.

6.2.2 Non-profiled attacks with transfer learning

The conventional machine learning approach assumes that both training and testing

data originate from the same domain, resulting in similar data distribution character-

istics and input feature spaces. Nonetheless, real-world scenarios often do not abide

by this assumption, and collecting appropriate training data can be challenging or

costly [71].

Therefore, there has been a growing interest in developing high-performance learn-

ers that can learn from easily accessible data originating from different domains. This

new approach, known as transfer learning, aims to transfer knowledge and insights

from one domain to another, leveraging the similarities between the domains and

exploiting the knowledge that has already been acquired in one domain to improve

learning in the other domain. The goal of transfer learning is to overcome the scarcity

or difficulty of collecting training data in the target domain by utilizing the knowledge

obtained from a different but related domain.

An interesting avenue for ADC SCA is through the use of transfer learning. Pro-

filed ADC SCAs present a unique challenge, particularly as the part number of the

ADC under attack may be unknown. Additionally, collecting appropriate training

data for the specific ADC under attack can be a challenging and costly endeavor.

With transfer learning, however, attackers can leverage knowledge and insights gained

from similar ADCs to circumvent the need for training data for each new ADC. By

using transfer learning, attackers can effectively transfer knowledge and insights from

related but distinct domains, providing a promising approach to improve the per-

formance of machine learning models in scenarios where the specific target ADC is

unknown or training data is scarce.
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6.2.3 Remote ADC SCA

ADC SCA can be more powerful if the SCA can be done remotely without the notice

of the ADC user. Far-field EMSA and remote PSA are two possible methods.

In [72], the authors present a novel deep learning-based side-channel attack on

AES-128 encryption using far-field electromagnetic emissions. Their neural networks,

trained on traces from five Bluetooth devices at different distances from the target,

effectively recover encryption keys even at 15 meters away in an office environment.

This research highlights the potential of far-field EMSA. The sensitive ADC input

might be recovered by far-field EMSA without the notice of the ADC user.

In [73], the researchers discuss the growing adoption of heterogeneous comput-

ing, which has led to the integration of Field Programmable Gate Arrays (FPGAs)

into cloud data centers and flexible System-on-Chips (SoCs). They reveal that the

integrated FPGA introduces a new security vulnerability by enabling software-based

power side-channel attacks without needing physical proximity to the target system.

The paper demonstrates the construction of an on-chip power monitor using ring os-

cillators (ROs) on a modern FPGA and its ability to observe power consumption of

other modules on the FPGA or SoC. The researchers then show the successful power

analysis attack on an RSA cryptomodule using the RO-based FPGA power monitor.

They also demonstrate that the FPGA-based power monitor can observe the power

consumption of a CPU on the same SoC and break timing-channel protection for an

RSA program running on the CPU. This work highlights remote power side-channel

attacks using an FPGA, challenging the common assumption that such attacks require

specialized equipment and physical access to the victim hardware when an integrated

FPGA is involved. Similarly, ADCs that are integrated with FPGA might be under

similar remote PSA.

6.2.4 Low-overhead ADC SCA Countermeasure

This thesis has proposed two schemes to reduce the overhead of the ADC SCA coun-

termeasure. The energy efficiency, area, and bandwidth can be further improved for
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secure ADCs. The secure ADCs can be widely adopted in real-world applications if

this overhead is removed.

There are numerous possible methods that can be further investigated and devel-

oped to address this challenge. First and foremost, a more efficient random conversion

scheme could be proposed, which would enable ADCs to process input data in a more

secure manner without compromising their overall performance. This could involve

the use of advanced cryptographic techniques, such as true random number genera-

tion, to ensure that the ADC’s conversion process is both unpredictable and resistant

to side-channel attacks.

Second, signature attenuation and information masking can be integrated into

conventional on-chip power management blocks, with the goal of concealing ADC

activities without incurring any additional performance overhead. By obfuscating the

power traces and electromagnetic emissions generated during the ADC’s operation,

these techniques can help prevent adversaries from exploiting side-channel information

to reveal the ADC’s internal states.
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