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Abstract 40 

Disarities in socioeconomic status (SES) lead to unequal access to financial and social 41 

support. These disparities are believed to influence reward sensitivity, which in turn, are 42 

hypothesized to shape how individuals respond to and pursue rewarding experiences. 43 

However, surprisingly little is known about how SES shapes reward sensitivity in 44 

adolescence. Here we investigated how SES influenced adolescent responses to 45 

reward, both in behavior and the striatum–a brain region that is highly sensitive to 46 

reward. We examined responses to both immediate reward (tracked by phasic 47 

dopamine) and average reward rate fluctuations (tracked by tonic dopamine) as these 48 

distinct signals independently shape learning and motivation. Adolescents (n=114; 12-49 

14 years; 58 female) performed a gambling task during functional magnetic resonance 50 

imaging. We manipulated trial-by-trial reward and loss outcomes, leading to fluctuations 51 

between periods of reward scarcity and abundance. We found that a higher reward rate 52 

hastened behavioral responses, and increased guess switching, consistent with the 53 

idea that reward abundance increases response vigor and exploration. Moreover, 54 

immediate reward reinforced previously rewarding decisions (win-stay, lose-switch) and 55 

slowed responses (post-reward pausing), particularly when rewards were scarce. 56 

Notably, lower-SES adolescents slowed down less after rare rewards than higher-SES 57 

adolescents. In the brain, striatal activations covaried with the average reward rate 58 

across time, and showed greater activations during rewarding blocks. However, these 59 

striatal effects were diminished in lower-SES adolescents. These findings show that the 60 

striatum tracks reward rate fluctuations, which shape decisions and motivation. 61 
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Moreover, lower SES appears to attenuate reward-driven behavioral and brain 62 

responses. 63 

 64 

 65 

 66 
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Significance statement 84 

Lower socioeconomic status (SES) is associated with reduced access to resources and 85 

opportunities. Such disparities may shape reward sensitivity, which in turn, could 86 

influence how individuals respond to and pursue rewarding experiences. Here, we show 87 

that lower-SES adolescents display reduced reward sensitivity in the brain and 88 

behavior. The striatum–a brain region that is highly sensitive to reward–showed greater 89 

activations during periods of high reward and tracked fluctuations between reward-rich 90 

and reward-scarce task phases. However, lower SES correlated with smaller reward-91 

driven striatal responses, and reduced response slowing after rare rewards. These 92 

findings link lower SES to reduced reward responses, which could trigger a cycle of 93 

reduced reward pursuit, leading to fewer positive experiences, which could further 94 

diminish reward sensitivity.   95 

 96 
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Introduction 106 

Adolescents from lower socioeconomic status (SES) backgrounds have less 107 

access to enriching opportunities and resources than their higher-SES peers (Farah, 108 

2017). These disparities may influence reward sensitivity, which in turn, could shape 109 

how adolescents respond to or pursue rewarding experiences (Amir et al., 2018). Such 110 

a cycle could explain how SES—by modulating reward responses and related 111 

processes—is associated with many consequential developmental outcomes (Farah, 112 

2017). Here, we examined how SES relates to reward-driven responses in behavior and 113 

the brain in adolescents, focusing on the striatum because of its high sensitivity to 114 

reward (Schultz, 1993).  115 

Rewards powerfully influence motivation, learning, and decision-making. 116 

Immediately rewarding outcomes, signaled by fast phasic striatal responses, are 117 

thought to serve as a learning signal to maximize rewards (Day et al., 2007). Rewarding 118 

outcomes strongly reinforce prior actions that led to rewards (Hamid et al., 2016) and 119 

induce “post-reward pausing” in behavior (Schlinger et al., 2008). Individuals are also 120 

sensitive to the overall amount of reward available in their environment. The average 121 

environmental reward rate (tracked by tonic dopamine and estimated from past reward 122 

history) influence moment-to-moment shifts in response time and exploration (Hamid et 123 

al., 2016; Niv et al., 2007; Wang et al., 2021). A high environmental reward rate boosts 124 

response speeding, in theory, by increasing the cost of time (slower responses forfeit 125 

more rewards) (Beierholm et al., 2013; Niv et al., 2006, 2007; Otto & Daw, 2019; Wang 126 

et al., 2013, 2021) and increases exploration, in theory, due to the high likelihood of 127 
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attaining rewards in the environment (Constantino & Daw, 2015; Niv et al., 2007; 128 

Sukumar et al., 2021). Interestingly, these distinct reward signals also interact: reward 129 

scarcity heightens sensitivity to immediate reward, amplifying both phasic dopamine 130 

firing following rewards (Bayer & Glimcher, 2005; Hamid et al., 2016) and behavioral 131 

pausing after rewarding outcomes (Schlinger et al., 2008). 132 

 How SES influences responses to these distinct reward signals in adolescents in 133 

the brain and behavior remains unclear. Previous research suggests that lower SES 134 

may increase sensitivity to immediate reward, as lower-SES individuals tend to choose 135 

small immediate rewards over larger, delayed ones (Oshri et al., 2019). This is 136 

hypothesized to adaptively enable individuals to quickly seize scarce reward 137 

opportunities to meet basic needs (Frankenhuis et al., 2016; Frankenhuis & Nettle, 138 

2020; Pepper & Nettle, 2017). Lower SES environments can also be less predictable 139 

(Evans, 2004), meaning past reward history may poorly predict future outcomes 140 

(Behrens et al., 2007; Ross & Hill, 2002). Based on this research, lower-SES 141 

adolescents may be highly responsive to immediate reward, but less responsive to past 142 

reward history, which could lead to contextually sub-optimal behavior.  143 

This hypothesis, however, contrasts with two studies that found that lower SES in 144 

adolescents correlated with reduced responses to rewarding cues in the parietal (White 145 

et al., 2022) and frontal (Palacios-Barrios et al., 2021) cortices. Notably, however, both 146 

studies linked lower-SES to poorer behavioral learning of cue-reward associations 147 

(Palacios-Barrios et al., 2021; statistical trend White et al., 2022), which may have 148 
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altered expectations of reward when viewing reward-predicting cues. The present study 149 

therefore eliminated learning demands. 150 

In the present study, we examined behavioral and striatal responses to reward and 151 

reward rate fluctuations in adolescents from diverse SES backgrounds. Adolescents 152 

performed a gambling task during functional magnetic resonance imaging in which they 153 

won or lost on each trial. Unbeknownst to participants, we manipulated trial outcomes, 154 

leading to alternating periods of reward scarcity and abundance. We examined how 155 

immediate reward and average reward rate fluctuations shaped vigor (response times 156 

or RTs) and choices differently by SES. We also examined SES-related differences in 157 

the influence of reward and average reward rate fluctuations on striatal responses. Our 158 

results support influential theories of decision that argue the striatum tracks average 159 

reward rate fluctuations, as well as theories that suggest that lower SES reduces 160 

behavioral and striatal reward sensitivity. 161 

 162 

 163 

 164 

 165 

 166 

 167 

 168 

 169 

 170 
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Methods 171 

Participants 172 

We recruited 127 adolescents from diverse SES backgrounds as part of a larger 173 

project examining the relationship between SES, brain development, and cognition. 174 

Eligible participants were in the 7th or 8th grade, proficient in English, had no MRI 175 

contraindications, were not diagnosed with autism or a neurological disability, and were 176 

not born premature (<34 weeks). Thirteen children did not complete the MRI, resulting 177 

in a sample of 114 adolescents (age range=12-14; mean (SD)=13.46 (0.68), n=56 178 

female). Five participants with excessive movement during scanning (average 179 

framewise displacement (FD) of more than 0.6 mm) were retained only for behavioral 180 

analyses, leaving 109 for the neuroimaging analysis (correlation between FD and SES 181 

among the included participants: β = 0.005, SE = 0.01, t(107) = 0.35, p = .730, r = 0.03). 182 

Of note, the findings remained unchanged with a more conservative limit of movement 183 

(average FD of < 0.3mm). All children and their legal guardians provided assent and 184 

consent. The study was approved by the MIT Committee on the Use of Human 185 

Subjects. Participants received compensation for their time. 186 

Before collecting data, we targeted a sample of at least 100 participants based 187 

on studies reporting medium-to-large effects (i.e., Cohen’s d of 0.5-0.8) on the 188 

relationship between SES and cognitive performance (Finn et al., 2017; Leonard et al., 189 

2019; Noble et al., 2007), brain structure (Decker, Duncan, et al., 2020; Romeo et al., 190 

2018), and brain function (Finn et al., 2017). A sensitivity analysis revealed that our 191 
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sample size provided 80% power to detect medium effects (d of 0.53 or Pearson’s r of 192 

0.25) in two-tailed between subject analyses.  193 

 194 

Measure of socioeconomic status (SES)  195 

Participants’ caregivers reported their annual household income (range=$2k-196 

$1.25m) and the number of years of schooling they had completed (range=7-20 years). 197 

Our primary measure of SES incorporated both these variables. We averaged the z-198 

scores of the maternal education, paternal education, and the z-score of the log-199 

transformed income measures (Figure 1A depicts the SES distribution). The log 200 

transformation on income accounts for the greater impact that gains have for lower-SES 201 

individuals. Two participants were missing one of the three measures, so their SES 202 

index was the average of the two others.  203 

 204 

Experimental Design  205 

Participants performed a variant of Delgado et al.’s card guessing task (Delgado 206 

et al., 2000; Hubbard, Romeo, et al., 2020; Hubbard, Siless, et al., 2020); Figure 1B). 207 

On each trial, adolescents guessed if an upcoming number, with a possible value from 208 

1-9, would be larger or smaller than 5. They then received immediate feedback based 209 

on the accuracy of their guess. Participants were told that accurate guesses would be 210 

financially rewarded as wins, and inaccurate guesses would be financially punished as 211 

losses, and that the sum of wins and losses would be calculated for an additional 212 

payment. Unbeknownst to participants, trial-by-trial gains and losses were 213 
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predetermined, and fixed across trials, with numbers generated to match the 214 

predetermined outcome for each trial. Outcomes were therefore unrelated to participant 215 

guesses, which equalized uncertainty across participants, and ensured everyone had 216 

the same experience of winning and losing. 217 

Each trial began with a question mark, during which participants had 1.5 seconds 218 

to register a guess (smaller than 5=index finger; larger than 5=middle finger; Figure 1B). 219 

A number was then displayed for 500ms, followed by 500ms of feedback. Feedback 220 

indicated whether participants had won or lost money, or neither won nor lost money. 221 

Positive feedback, which followed correct guesses, consisted of a green arrow pointing 222 

up and the text “+$1”; negative feedback, which followed incorrect guesses, consisted of 223 

a red arrow pointing down and text displaying “-$0.5”; neutral feedback, which followed 224 

the number 5, consisted of a light green double-sided arrow. If participants did not 225 

register a guess, they received neutral feedback. This happened rarely (3.1 trials or 226 

4.5% of trials on average per participant; relationship between missed responses and 227 

SES: β = 0.27, SE = 0.29, t(114) = 0.95, p = .35). Participants viewed a fixation cross 228 

for 1 second before a new trial began. 229 

The task, in total, across both runs, consisted of 8 blocks of 8 trials each, with 4 230 

blocks of mostly positive outcomes ('reward blocks') and 4 blocks of mostly negative 231 

outcomes ('loss blocks’). Each of the 2 runs contained 2 reward and 2 loss blocks and 232 

each block was approximately 28 seconds. This block design maximized the ability to 233 

detect striatal responses to reward, while also leading to alternating periods of monetary 234 

reward scarcity and abundance, allowing us to examine the influence of fluctuations in 235 
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average reward rate across time (Figure 1D). To keep participants unaware of the fixed 236 

outcomes, there was no delay between blocks, and blocks contained a few trials of the 237 

opposite type (Figure 1C depicts trial outcomes in a representative reward and loss 238 

block). Reward blocks included 6 reward trials interleaved with two of either loss or 239 

neutral trials. Loss blocks included 6 loss trials interleaved with two of either reward or 240 

neutral trials. All participants received $10 in bonus money after the task.  241 

 242 

 243 

Figure 1. SES score distribution, gambling task schematic, and trial-by-trial 244 
moving average of rewards and losses. (A) Distribution of SES composite scores: 245 
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SES was operationalized as the mean of the z-transformed maternal and paternal 246 
education variables (years of schooling completed), and z-scored log of annual 247 
household income. The distribution is displayed, with the y-axis representing sample 248 
proportions. (B) Gambling task schematic: Participants guessed whether a forthcoming 249 
number would be greater or less than 5. Next, the actual number was revealed, and 250 
participants received positive (top panel, green arrow), negative (middle panel, red 251 
arrow), or neutral feedback (if the number was 5; bottom panel, light green arrow) 252 
regarding their guess. A 1-second fixation cross (not depicted) preceded the next trial. 253 
(C) Calculating the moving average of reward: An exponentially weighted moving 254 
average of gains and losses quantified recent history of reward. This measure was used 255 
to examine whether distinct task phases associated with reward scarcity or abundance 256 
influenced trial-by-trial shifts in behavior (choices, RTs), and interacted with behavioral 257 
responses (choices, RTs) to immediate feedback. (D) Schematic of reward rate 258 
fluctuations in a representative participant. Grey shading represents loss blocks and 259 
non-grey areas represent reward blocks. Pink and green colors denote periods in which 260 
the moving average of reward is above or below the mean. 261 
 262 

Image acquisition 263 

Participants practiced the gambling task and completed a mock scanning session 264 

to acclimate to the MRI environment, which improves compliance (de Bie et al., 2010; 265 

Gao et al., 2023). They then completed 2 runs of the gambling task inside the scanner 266 

and watched a movie while we acquired a T1-weighted (T1w) anatomical scan. Images 267 

were acquired using a 3T Siemens Prisma Fit scanner with a 32-channel head coil. 268 

Whole-brain functional BOLD images were acquired using an EPI sequence (TR=0.8s, 269 

TE=37s, Flip Angle=52°, voxel size=2mm isotropic, multi-band factor=8). The two runs 270 

were acquired with reversed phase encoding to support distortion correction. High 271 

resolution T1w images were acquired with an MP-RAGE sequence (TR=2.4s, T 272 

=2.18ms, Flip Angle=8°, voxel size=0.8mm isotropic). 273 

 274 

Image preprocessing  275 
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Preprocessing of anatomical and functional data was performed using fMRIPrep 276 

version 22.1.1 (Esteban et al., 2019).  277 

 278 

Anatomical preprocessing 279 

The anatomical T1w image was corrected for intensity non-uniformity with 280 

N4BiasFieldCorrection (Tustison et al., 2010) distributed with ANTs 2.3.3 (Avants et al., 281 

2008) and used as T1w-reference throughout the workflow. The T1w-reference was 282 

then skull-stripped using ANTs workflow with OASIS30ANTs as target template. Brain 283 

tissue segmentation of gray-matter, white-matter, and cerebrospinal fluid was performed 284 

on the brain-extracted T1w using fast (FSL 6.0.5.1:57b01774, RRID:SCR_002823), 285 

(Zhang et al., 2001). Brain surfaces were reconstructed using recon-all from FreeSurfer 286 

version 7.2.0 (Dale et al., 1999)), and the brain mask estimated previously was refined 287 

with a custom variation of the method to reconcile ANTs-derived and FreeSurfer-derived 288 

segmentations of subcortical gray matter including striatal subregions (Fischl et al., 289 

2002). Volume-based spatial normalization to one standard space was performed 290 

through nonlinear registration, using brain-extracted versions of both the T1w reference 291 

and T1w template. FSL’s MNI ICBM 152 non-linear 6th Generation Asymmetric 292 

Average Brain Stereotaxic Registration Model (Evans et al., 2012), RRID:SCR_002823; 293 

TemplateFlow ID: MNI152NLin6Asym] was selected for spatial normalization. 294 

 295 

Functional preprocessing 296 
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A skull-stripped reference volume was generated using a custom methodology of 297 

fMRIPrep. Head-motion parameters were estimated using mcflirt (FSL 298 

6.0.5.1:57b01774, (Jenkinson et al., 2002). The estimated fieldmap was aligned with 299 

rigid-body registration to the target EPI reference run. Field coefficients were mapped 300 

onto the reference EPI using the rigid-body transform. BOLD runs were slice-time 301 

corrected using 3dTshift from AFNI (Cox & Hyde, 1997) RRID:SCR_005927). The 302 

BOLD reference images were co-registered to the T1w reference using bbregister 303 

(FreeSurfer; (Greve & Fischl, 2009), with six degrees of freedom. Noise regressors 304 

were estimated based on the preprocessed BOLD. Framewise displacement (FD) was 305 

computed using two formulations following Power (Power et al., 2014), and Jenkinson 306 

(Jenkinson et al., 2002). Physiological regressors were extracted from eroded 307 

cerebrospinal fluid and white-matter volumes for use in subsequent, component-based 308 

noise corrections (CompCor, Behzadi et al. 2007). The BOLD time-series were 309 

resampled into standard space in a single interpolation step by composing all the 310 

pertinent transformations (i.e., head-motion transform matrices, susceptibility distortion 311 

correction, and co-registrations to anatomical and output spaces). Volumetric 312 

resamplings were performed using ANTs, configured with Lanczos interpolation to 313 

minimize the smoothing effects of other kernels (Lanczos 1964). 314 

 315 

Statistical analyses 316 

Statistical analyses were conducted in R (version 4.2.2). Raw data, code, and 317 

extended analyses and supplementary tables are available at the following link: 318 
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https://osf.io/pqtby/. Unless stated otherwise, linear mixed effects regressions or general 319 

linear mixed effects regressions were employed for data that repeated within 320 

participants (e.g., single-trial RTs). Mixed effects models included random intercepts for 321 

each participant and random slopes for fixed effects that repeated within participants. In 322 

case of non-converging models, we followed recommendations in (Brown, 2021), 323 

iterating through the following until they converged: (1) using the "bobyqa" optimizer, (2) 324 

increasing the number of iterations, (3)  forcing zero correlations among random effects, 325 

and (4) dropping random effects based on model comparison. RTs that fell 3 absolute 326 

deviations from an individual's median RT were excluded (n=2 on average per 327 

participant). Measures were mean centered within or across participants or effect-coded 328 

prior to model fitting.  329 

 330 

Calculating trial-by-trial shifts in the moving average reward rate 331 

We computed an exponentially weighted moving average (EWMA) of rewards 332 

and losses across trials ($1, $0.5, or $0; See Figure 1C-D for a schematic). Each trial 333 

was assigned a value based on the recent reward and loss history. High values 334 

indicated more gains than losses, whereas low values indicated more losses than gains. 335 

We used an exponentially weighted (rather than simple) moving average to emphasize 336 

recent time points, which have a larger impact on psychological state, while still 337 

incorporating data points from farther in the past (Awheda & Schwartz, 2016). We used 338 

the following update rule: 339 

 340 
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EWMAt = α ´ rt  + (1 – α) ´ EWMA t-1 341 

 342 

In this formula, the EWMAt represents the EWMA at the current trial, t, α is the 343 

smoothing factor or learning rate parameter that determines the influence of the most 344 

recent observation on the moving average, and r represents the reward on the current 345 

trial, t. To prevent disproportionate initial weighting and to ensure the average reward 346 

rate stabilized, the first 3 trials were omitted from the EWMA measure. To balance 347 

recent and historical data, α was based on an 8-period span, calculated as: α = 2/(N+1), 348 

where N was set to 8 to match the number of trials in each fixed reward and loss block. 349 

However, we found that using EWMAs derived from smoothing factors of 5- and 10-350 

period spans did not alter the pattern of results. 351 

As an exploratory analysis, we also tested whether individual differences in 352 

optimal learning rates for the average reward rate variable differed by SES. To do so, 353 

we fit a model that estimated the learning rate as a free parameter for each participant 354 

using R’s base optim function with the L-BFGS-B algorithm. The algorithm identified the 355 

learning rate per participant that minimized that residual sum of squares (RSS) in a 356 

model predicting subsequent RTs from the Exponentially Weighted Moving Average of 357 

Reward for each participant. 358 

Characterizing behavioral responses to rewards  359 

We examined how immediate feedback (win versus loss outcomes) and 360 

fluctuations in the average reward rate shaped RTs and guesses. We first fit a model 361 
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predicting RTs from the preceding trial’s feedback (win, loss), the moving average of 362 

reward, and their interaction. We then re-fit this model after adding SES as a covariate 363 

and interaction term. We also examined the influence of immediate reward and average 364 

reward rate fluctuations on choices–specifically, how likely an individual was to repeat 365 

their prior guess or switch to a different guess (i.e., switched or stayed). Therefore, the 366 

dependent variable was whether an individual had repeated their prior choice (switched 367 

= 1; stayed = 0) and the independent variables were the preceding trial feedback (win, 368 

loss), the moving average of reward, and their interaction. We re-fit this model after 369 

adding SES as a covariate and interaction term. All models included trial number as a 370 

covariate to control for the general effects on time on task. Since there were only 8 371 

neutral trials per participant across the task, trials that followed neutral feedback were 372 

excluded from analysis.  373 

 374 

The relationship between SES and striatal volumes 375 

Three linear mixed effects models were fit to examine the association between 376 

SES and ROI volumes, separately for the caudate, putamen, and nucleus accumbens. 377 

Each model predicted volume from SES, hemisphere, and their interaction, to determine 378 

whether the influence of SES was stronger for one particular hemisphere. Age, sex, and 379 

intracranial volume were also included as covariates. ROIs with volumes that fell > 3 380 

absolute deviations from the sample median were excluded (all regions for 1 participant, 381 

the caudate and right nucleus accumbens for another).  382 

 383 
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Examining reward-driven striatal responses to reward and average reward rate 384 

fluctuations across time 385 

To ascertain if striatal activations during reward differed from loss blocks and to 386 

examine their covariance with average reward rate fluctuations, we conducted 387 

neuroimaging analyses with Nilearn. The scripts and data are publicly accessible 388 

(https://osf.io/pqtby/). The approach involved two separate general linear models 389 

(GLMs) applied to participant data within MNI coordinate space. The first model had 390 

distinct regressors for reward and loss conditions. The second model incorporated a 391 

regressor for the exponentially weighted moving average of reward, resampled at the 392 

fMRI’s TR. Both models were convolved with SPM’s hemodynamic response function 393 

and controlled for head movement and noise components (3 translation and rotation 394 

parameters, plus top 5 principal AcompCor components (defined in a combined white 395 

matter and cerebrospinal fluid mask). This analysis yielded z-value effect size maps for 396 

each subject. The maps were entered into a group-level analysis to identify striatal 397 

voxels that were sensitive to the distinct reward versus loss blocks or to the average 398 

reward rate. Sensitivity was defined by voxel significance within the anatomical striatal 399 

mask from the Harvard-Oxford Atlas (FDR-corrected p < 0.05, minimum cluster size of 400 

10). For each analysis, we calculated the mean z value per participant across 401 

responsive voxels, separately for the caudate, putamen, and nucleus accumbens in 402 

each hemisphere. Participants therefore had 6 z values (1 per ROI) for each analysis. 403 

These values represented the average effect size for the differences in activations 404 

between reward and loss blocks and the relationship with the average reward rate.  405 

https://osf.io/pqtby/
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To assess the degree to which these effect sizes deviated from zero, we fit 2 406 

intercept-only linear mixed-effects models, predicting mean z values per ROI, controlling 407 

for age and sex, with random intercepts per participant to account for repeated 408 

measures across hemispheres. We excluded outlier values that fell 3 absolute 409 

deviations from the sample’s median (1 value for the left putamen and 1 for the left 410 

caudate). Including outliers did not change the pattern of results. 411 

Examining how reward-driven striatal responses differ by SES 412 

Finally, we tested how SES related to activation level differences between reward 413 

and loss blocks, as well as the degree to which striatal activations covaried with 414 

fluctuations in the average reward rate. To this end, we fit 2 linear mixed effects models. 415 

The dependent variables were z values reflecting, either, activation level differences for 416 

reward and loss blocks or the covariance between striatal activations and average 417 

reward rate fluctuations. Both models included SES, hemisphere, and their interaction 418 

as independent variables, and covariates for age and sex.  419 

 420 

 421 

 422 

 423 

 424 

 425 

 426 

 427 
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Results 428 

We first describe how behavioral responses, specifically response times (RT) 429 

and choices, are influenced by immediately rewarding outcomes, and covary with 430 

fluctuations in the average reward rate across time. We then describe how these 431 

behavioral responses differ by SES. Turning to the neuroimaging data, we then explore 432 

the association between SES and the volume of the putamen, caudate, and nucleus 433 

accumbens. Furthermore, we examine differences in striatal activations during reward 434 

versus loss blocks, and examine how these activations covary with temporal 435 

fluctuations in the average reward rate. Finally, we focus on disparities in striatal 436 

responses across SES. 437 

 438 

Average reward rate fluctuations influence RTs and post-reward pausing 439 

Adolescents responded more slowly after winning than losing (i.e., post-reward 440 

pausing: β = 0.02, SE = 0.005, t(262) = 4.68, p < .001; Figure 2A). Furthermore, trial-by-441 

trial RTs covaried with fluctuations in the average reward rate, such that a higher 442 

average reward rate led to faster RTs (β = −0.04, SE = 0.02, t(98) = −2.32, p = .022). 443 

Fluctuations in the average reward rate also interacted with immediate feedback to 444 

shape RTs: periods of reward scarcity amplified post-reward pausing (Reward Rate x 445 

Preceeding feedback: β = −0.05, SE = 0.02, t(104) = −3.53, p < .001, Figure 2B), 446 

indicating responses to immediate reward were amplified by a history of low rewards. In 447 

fact, post-reward pausing was only observed when rewards were scarce but not when 448 

they were plentiful (effect of preceding feedback when the reward rate is centered at -449 
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1SD below the mean: β = 0.04, SE = 0.007, t(100) = 6.23, p < .001; above the mean: β 450 

= 0.003, SE = 0.008, t(104) = 0.43, p = .665). These findings show that adolescents 451 

tracked fluctuations in the average reward rate, which shaped response times across 452 

time and modulated sensitivity and responses to immediate reward.  453 

 454 

 455 

Figure 2. Immediate reward and the moving average reward rate shape RTs and 456 
choices. (A) Adolescents responded more slowly after a win than a loss (p < 0.001). (B) 457 
A lower average reward rate amplified post-reward slowing (interaction: p <0.001) 458 
indicating heightened behavioral responses to reward when rewards were scarce. (C) 459 
Adolescents were most likely to repeat a guess when their guess had been rewarded on 460 
the previous trial (p < 0.001). (D) These “post-reward stay” effects were amplified by a 461 
low average reward rate (p < 0.001). In all figures, the mean and within-subject error 462 
bars are plotted. The moving average reward rate was divided into low and high 463 
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average reward rate using a median split for ease of visualization. Note that we model 464 
the average reward rate continuously in all analyses.  465 

 466 

 467 

Average reward rate fluctuations influence guess switching  468 

Immediate feedback reinforced decisions on subsequent trials: when adolescents 469 

won, they were more likely to repeat their prior guess on the subsequent trial than if 470 

they had lost (β = −0.31, SE = 0.04, z = −7.31, p < .001; Figure 2C). A lower average 471 

reward rate also increased the likelihood of repeating a previously rewarded guess (i.e., 472 

increased win-stay, lose-switch effects (Reward Rate x Preceeding Feedback: β = 0.57, 473 

SE = 0.12, z = 4.73, p < .001; Figure 2D). Indeed, win-stay effects were most prominent 474 

when the average reward rate was low, indicating a history of low rewards increased the 475 

tendency to stick with a rare rewarding option (main effect of immediate feedback on 476 

choices when the average reward rate is centered at -1SD below the mean: β = −0.51, 477 

SE = 0.05, z = −9.64, p < .001; above the mean: β = −0.11, SE = 0.06, z = −1.75, p = 478 

.080. In general, a history of high rewards (a higher average reward rate) also increased 479 

the likelihood of switching guesses across trials (β = 0.68, SE = 0.15, z = 4.46, p < 480 

.001), suggesting a greater tendency to make alternative exploratory decisions when 481 

rewards were abundant. These findings suggest that a history of low reward increases 482 

the tendency to stick with a previously rewarding option, and reduces the tendency to 483 

explore alternatives for reward.    484 

 485 
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Reward rate fluctuations influence post-reward pausing more in higher-SES 486 

adolescents 487 

Immediate reward and average reward rate fluctuations influenced choices 488 

similarly regardless of SES (SES x feedback: β = 0.09, SE = 0.05, z = 1.73, p = .084; 489 

SES x average reward rate: β = −0.25, SE = 0.18, z = −1.40, p = .161; SES x feedback 490 

type x moving average: β = 0.18, SE = 0.15, z = 1.21, p = .225; Figure 3A). Additionally, 491 

these distinct temporal dimensions of reward influenced RTs similarly, regardless of 492 

SES (SES x feedback: β = −0.002, SE = 0.005, t(109) = −0.45, p = .651; SES x average 493 

reward rate: β = 0.02, SE = 0.02, t(100) = 1.04, p = .301; Figure 3A).  494 

However, reward-rate fluctuations modulated post-reward pausing more in 495 

higher- than lower-SES adolescents (SES x feedback type x moving average: β = 496 

−0.04, SE = 0.02, t(105) = −2.54, p = .013; Figure 3B). That is, higher-SES adolescents 497 

slowed more following rare rewards (main effect of SES when the reward rate is 498 

centered at -1SD below the mean to reflect reward scarcity: β = 0.02, SE = 0.007, t(684) 499 

= 2.20, p = .028; Figure 3B). When rewards were plentiful, higher-SES adolescents 500 

slowed less following rewards than lower-SES adolescents (centered at +1SD above 501 

the mean to reflect reward abundance: β = −0.02, SE = 0.008, t(4949) = −2.05, p = 502 

.041; Figure 3B) though neither group showed significant evience of post-reward 503 

pausing when rewards were plentiful (ps > 0.087). Interestingly, SES was unrelated to 504 

individual differences in optimal learning rates (β =0.06, SE = 0.04, t(114) = 1.32, p = 505 

.189), suggesting that heightened post-reward pausing was not driven by a greater 506 

tendency to update expectations in response to new information. These findings 507 
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suggest that adolescents from lower-SES backgrounds were less likely to adapt 508 

responses to immediate reward based on average reward rate fluctuations. Analyses 509 

reported in our extended analyses on the Open Science Framework 510 

(https://osf.io/9vhtw) demonstrate these results are robust when using education and 511 

income to separately characterize SES.  512 

 513 

 514 

Figure 3. Reward rate fluctuations modulate post-reward pausing more in higher-515 
SES adolescents. (A) Reward rate fluctuations influenced choice switching following 516 
immediate reward similarly by SES. (B) Reward rate fluctuations modulated post-reward 517 

https://osf.io/9vhtw
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pausing more among higher- than lower-SES adolescents. This led to greater RT 518 
slowing following rewards when rewards were scarce among higher-SES adolescents. 519 
In all figures, we depict the mean and within-subject error bars. The moving average 520 
reward rate and socioeconomic status were divided into low and high bins using a 521 
median split for ease of visualization. Note that we model these variables continuously 522 
in the analyses reported in the paper.  523 
 524 

 525 

Lower SES correlates with smaller caudate volumes 526 

Higher SES was associated with larger caudate volumes (β = 96.61, SE = 37.65, 527 

t(103) = 2.57, p = .012; Figure 4). In contrast, there were no significant associations 528 

between SES and the volumes of the putamen (β = 32.78, SE = 49.74, t(103) = 0.66, p 529 

= .511) or nucleus accumbens (β = 1.94, SE = 7.26, t(104) = 0.27, p = .790). Moreover, 530 

there were no SES x hemisphere interactions in any ROI (all ps > 0.590), demonstrating 531 

that SES-related differences in volumes did not differ by hemisphere.  532 

 533 

 534 

Figure 4. SES and striatal volumes. SES positively correlated with the volume of the 535 
caudate (p = 0.012), but not the putamen or nucleus accumbens (ps>0.510). For ease 536 
of visualization, data points reflect the average volume of the left and right hemisphere, 537 
but the statistics reported in the text are from models that treat the left and right 538 
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hemisphere as repeated measures within participants. Individual data points represent 539 
participant level data, and the grey shading reflects the standard error of the mean.  540 
 541 

The striatum tracks fluctuations in the average reward rate 542 

Across adolescents, mean activations were larger during reward than loss blocks in the 543 

caudate (β = 0.50, SE = 0.07, t(106) = 6.74, p < .001), putamen (β = 0.61, SE = 0.08, 544 

t(106) = 7.83, p < .001), and nucleus accumbens (β = 0.77, SE = 0.08, t(107) = 9.87, p 545 

< .001; Figure 5A). Furthermore, striatal activations covaried with the average reward 546 

rate, such that a higher average reward rate led to greater activations in the caudate (β 547 

= 0.77, SE = 0.08, t(105) = 9.60, p < .001), putamen (β = 0.66, SE = 0.07, t(105) = 8.94, 548 

p < .001), and nucleus accumbens (β = 1.32, SE = 0.09, t(103) = 14.07, p < .001; Figure 549 

5B. These findings show that the striatum not only responds more to reward than loss in 550 

general, but tracks moment-by-moment shifts in the average reward rate across time.  551 

 552 
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 553 

Figure 5. Striatal activations covary with reward and loss blocks and reward rate 554 
fluctuations across time. (A) Across the sample, activations in the striatum were 555 
greater during reward than loss blocks (ps < 0.001). (B) Moreover, the striatum tracked 556 
average reward rate fluctuations across time, even after FDR correction for multiple 557 
comparisons across every voxel in the striatum (ps < 0.001). In A and B, the color bar 558 
represents z-values and color intensity reflect the strength of the effect.  559 
 560 

 561 

Lower SES correlates with reduced striatal responses to reward 562 

Lower SES correlated with smaller activation level differences between reward 563 

and loss blocks in the caudate (β = 0.22, SE = 0.09, t(105) = 2.54, p = .013) and 564 

putamen (β = 0.25, SE = 0.09, t(104) = 2.73, p = .007) and marginally in the nucleus 565 

accumbens (marginal effect: β = 0.16, SE = 0.09, t(106) = 1.79, p = .077; Figure 6A). 566 

None of these effects differed by hemisphere (SES x hemisphere: all ps > 0.29). 567 

Furthermore, striatal activations covaried with average reward rate fluctuations more 568 



 29 

strongly in higher-SES adolescents in the putamen (β = 0.17, SE = 0.09, t(104) = 2.02, 569 

p = .046; Figure 6B), but not the caudate (β = 0.08, SE = 0.10, t(104) = 0.88, p = .380) 570 

or nucleus accumbens (β = 0.02, SE = 0.11, t(101) = 0.18, p = .860). None of these 571 

effects differed by hemisphere (SES x hemisphere: all ps > 0.21). Of note, the 572 

relationship between SES and reward-driven activations also did not differ by striatal 573 

subregion (SES x subregion interaction: all ps > 0.10).  574 

 575 

 576 

Figure 6. Lower SES correlates with reduced striatal activations to reward (A) 577 
Lower SES correlated with less activation differences between reward and loss blocks 578 
in the caudate and putamen and marginally in the nucleus accumbens. (B) The 579 
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relationship between striatal activations and average reward rate fluctuations was 580 
stronger for higher- than lower-SES adolescents in the putamen (p=0.046), but not in 581 
the caudate or nucleus accumbens (ps>0.37). For ease of visualization, individual data 582 
points reflect mean z values across the left and right hemisphere. Statistics reported in 583 
the text model the left and right hemisphere separately as repeated measures. 584 
Individual data points represent participant data, and the grey shading reflects the 585 
standard error of the mean.  586 

 587 

 588 

Discussion 589 

We asked how socioeconomic status in adolescence was related to reward-590 

driven responses in the brain and behavior. Drawing on infuential models of decision-591 

making (Constantino & Daw, 2015; Niv et al., 2006, 2007), we examined how choices, 592 

response times, and striatal activations were shaped by immediate reward outcomes 593 

and previous reward history (average reward rate fluctuations across time). We found 594 

that, behaviorally, participants were more likely to repeat a guess if it had led to a win 595 

(win-stay, lose-switch effects) and responded more slowly after receiving a reward 596 

(post-reward pausing). Fluctuations in the average reward rate also shaped behavior: a 597 

higher reward rate hastened RTs and increased guess switching. Moreover, a low 598 

reward rate increased behavioral sensitivity to immediately rewarding outcomes, 599 

augmenting win-stay, lose-switch effects and post-reward pausing. Notably, compared 600 

to higher-SES adolescents, lower-SES adolescents exhibited reduced post-reward 601 

pausing when rewards were scarce. We also observed that across participants, striatal 602 

activations were larger during reward than loss blocks, and covaried with fluctuations in 603 

the average reward rate across time. However, relative to higher-SES adolescents, 604 

lower-SES adolescents displayed reduced activations during reward relative to loss 605 
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blocks in the caudate and putamen, and marginally in the nucleus accumbens. And, 606 

putamen activations tracked average reward rate fluctuations less in lower-SES 607 

adolescents. These findings show that the striatum tracks average reward rate 608 

fluctuations, which shape choices and response times (Hamid et al., 2016; Niv et al., 609 

2006, 2007; Wang et al., 2013, 2021). They also link lower SES in adolescence to 610 

reduced reward sensitivity, both in the brain and behavior. 611 

We found that adolescents tracked fluctuations in the average reward rate across 612 

time, which influenced decisions and response times. When rewards were abundant, 613 

individuals were more likely to switch choices across trials. These findings align with 614 

studies in human adults (Constantino & Daw, 2015; Niv et al., 2007; Sukumar et al., 615 

2021) and support theories of decision making (Constantino & Daw, 2015; Sukumar et 616 

al., 2021). These theories argue that when the average environmental reward rate is 617 

lower that an option’s perceived value, it is rational to ‘stay’ with a rewarding option due 618 

to the limited prospects of finding rewards elsewhere. Conversely, when the 619 

environmental reward rate is higher than the perceived value of an option, it makes 620 

sense to switch to explore alternative sources of reward. It is possible, then, that 621 

adolescents used the average reward rate as a threshold for whether to switch or stay 622 

with a previous choice. Future research could examine how the tendency to track 623 

average reward rate fluctuations develops–and whether adolescents–given their 624 

heightened sensitivity to reward (Cohen et al., 2010; Davidow et al., 2016; Galvan, 625 

2010; Galvan et al., 2006) might be even more attuned to fluctuations in the average 626 

reward rate across time than adults. 627 
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A higher average reward rate also covaried with faster RTs. This finding is 628 

consistent with research in human adults (Beierholm et al., 2013; Otto & Daw, 2019) 629 

and supports theories arguing that fluctuations in the average reward rate shape the 630 

cost time (Niv et al., 2006, 2007). That is, when rewards are abundant, action delays 631 

are presumably more costly because one forfeits relatively more potential rewards, 632 

incentivizing faster responses. Interestingly, other researchers have theorized that 633 

rewards also govern the opportunity cost engaging effort and sustaining attention 634 

(Esterman et al., 2016; Esterman & Rothlein, 2019; Kurzban et al., 2013; Lin et al., 635 

2022; Massar et al., 2016; Otto & Daw, 2019) raising the possibility that average reward 636 

rate fluctuations shape diverse aspects of cognition–such as fluctuations in attention 637 

(Decker et al., 2023, 2022; Decker & Duncan, 2020). Our findings therefore not only 638 

support theories linking reward rate fluctuations to motivation and decision-making and 639 

extend these ideas to human adolescents, but raise questions about the influence of 640 

reward rate fluctuations on other aspects of cognition. 641 

Adolescents were also responsive to immediately rewarding outcomes, in line 642 

with previous research (Hamid et al., 2016; Reynolds et al., 2001): they were most likely 643 

to repeat a previous choice if it had led to a reward on the prior trial and responded 644 

more slowly after a reward outcome, a phenomenon known as “post-reward pausing” 645 

(Crossman, 1968; Felton & Lyon, 1966; McMillan, 1971; Schlinger et al., 2008; Wallace 646 

& Mulder, 1973; Williams et al., 2011). Notably, these effects were amplified by a lower 647 

average reward rate. Our finding adds to a growing body of research suggesting the 648 

background average reward rate modulates sensitivity to immediate reward. Indeed, in 649 
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animals and humans, post-reward pausing is prolonged when rewards are scarce 650 

(Schlinger et al., 2008). Furthermore, fewer recent rewards and lower tonic dopamine 651 

amplify phasic dopamine firing (Hamid et al., 2016)–a finding that potentially provides a 652 

neurobiological explanation for the increased rewards responsivity we observed here 653 

when reward were scarce. Slower responses after unexpected reward could also reflect 654 

surprise due to the infrequency of the event (Decker, Finn, et al., 2020) or heightened 655 

response caution that facilitated more deliberate decision-making (Schlinger et al., 656 

2008, p. 50). Altogether, this finding shows that average reward rate fluctuations 657 

influenced responses to immediate outcomes, which shaped choices and RTs. When 658 

adolescents tune into the average environmental reward rate, they may make more 659 

adaptive decisions according to the overall rewards available in the environment.  660 

We also observed that the extent of RT slowing after rare rewards varied by 661 

SES. Adolescents from higher-SES backgrounds showed greater post-reward pausing 662 

than lower-SES adolescents when rewards were scarce. This finding could reflect 663 

greater attunement to reward rate fluctuations among higher-SES adolescents, which 664 

would be expected to increase the saliency of receiving a rare reward when the reward 665 

rate was low. However, exploratory analyses showed that SES did not correlate with 666 

learning rates–the tendency to update the average reward rate in response to new 667 

outcomes. Thus, greater post-reward pausing may instead reflect a greater responsivity 668 

to rewards in reward-scarce contexts specifically, rather than a general tendency to 669 

more readily update the average reward rate.  670 
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Interestingly, reward rate fluctuations covaried with striatal activations in the 671 

caudate, putamen and nucleus accumbens, such that a higher reward rate led to 672 

greater activations in these regions. These findings are consistent with animals studies 673 

showing that tonic dopamine fluctuations in the striatum track the average reward rate 674 

and in doing so shapes motivational vigor and decision-making (Hamid et al., 2016; 675 

Wang et al., 2013, 2021), and, as far as we know, is the first human fMRI study 676 

demonstrating this relationship.  677 

Our results extend prior findings linking lower SES to diminished reward 678 

sensitivity in neocortical regions like the anterior cingulate cortex (Palacios-Barrios et 679 

al., 2021) and parietal cortex (White et al., 2022). Indeed, we observed that the extent of 680 

reward-driven activations in the striatum differed by SES. Higher-SES adolescents 681 

showed greater reward-driven activations than lower-SES adolescents in the putamen, 682 

caudate, and marginally in the nucleus accumbens. Moreover, putamen activations 683 

tracked average reward rate fluctuations less in lower-SES adolescents. Notably, prior 684 

studies employed incremental learning tasks in which adolescents learned the value of 685 

cues in predicting outcomes over time. Our focus on a reward task that did not involve 686 

learnable cue-outcome contingencies broadens the literature by showing that reduced 687 

reward sensitivity is even observed when eliminating learning demands.  688 

Our findings support proposals that lower SES environments reduce reward 689 

sensitivity (Seligman, 1972). Past literature suggests that chronic stress diminishes the 690 

belief that actions have consequences rendering individuals less motivated to pursue 691 

rewarding outcomes (Seligman, 1972). It is therefore possible that chronic stress and 692 
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reduced perceived control, which are more common among lower-SES individuals 693 

(Farah, 2018; Hackman et al., 2010; Hackman & Farah, 2009; McLaughlin et al., 2014) 694 

mediated the effects we observed here. Targeted research that employs direct measures 695 

of stress could directly test this mechanism.  696 

The present findings offer insights into why cognitive performance (Noble et al., 697 

2007) and emotional well-being (Reiss, 2013) are often reduced in lower SES 698 

adolescents. Reward sensitivity plays a vital role in many aspects of cognition, 699 

influencing everything from the ability to learn important associations (Davidow et al., 700 

2016) to the ability to remain attentive to important events (Esterman & Rothlein, 2019; 701 

Shenhav et al., 2013). Rewards boost motivation (Frömer et al., 2021; Schultz, 1993; 702 

Westbrook et al., 2021; Westbrook & Braver, 2016), and support success in short and 703 

long-term endeavors, such as academic and workplace pursuits. Disparities in reward 704 

sensitivity, therefore, may contribute to disparities in learning, attentional performance, 705 

and motivation. Given the intimate link between reward sensitivity and emotional well-706 

being, reduced reward sensitivity may contribute to the higher rates of depression 707 

(Auerbach et al., 2022; Reiss, 2013) and lower life satisfaction observed in lower-SES 708 

groups (Kahneman & Deaton, 2010). On a broader level, these insights stress the 709 

importance of socioeconomic policies (Farah, 2018) aimed at reducing the burdens of 710 

poverty to foster cognitive and emotional well-being in society. 711 
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