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Consistent Cooperative Localization

Alexander Bahr Matthew R. Walter John J. Leonard
Computer Science and Artificial Intelligence Lab, MIT, Cambridge, MA, USA

Abstract— In cooperative navigation, teams of mobile robots
obtain range and/or angle measurements to each other and
dead-reckoning information to help each other navigate more
accurately. One typical approach is moving baseline navigation,
in which multiple Autonomous Underwater Vehicles (AUVs) ex-
change range measurements using acoustic modems to perform
mobile trilateration. While the sharing of information between
vehicles can be highly beneficial, exchanging measurements
and state estimates can also be dangerous because of the risk
of measurements being used by a vehicle more than once;
such data re-use leads to inconsistent (overconfident) estimates,
making data association and outlier rejection more difficult and
divergence more likely.

In this paper, we present a technique for the consistent
cooperative localization of multiple AUVs performing mobile
trilateration. Each AUV establishes a bank of filters, performing
careful bookkeeping to track the origins of measurements and
prevent the use any of the measurements more than once.
The multiple estimates are combined in a consistent manner,
yielding conservative covariance estimates. The technique is il-
lustrated using simulation results. The new method is compared
side-by-side with a naive approach that does not keep track of
the origins of measurements, illustrating that the new method
keeps conservative covariance bounds whereas state estimates
obtained with the naive approach become overconfident and
diverge.

Index Terms— Cooperative Localization, Cooperative Navi-
gation, Sensor Fusion

I. MOTIVATION

As mobile robots become more affordable and reliable,

the use of a groups of many robots becomes more feasible.

While the primary reason to use a group of robots is often

to speed up tasks such as map building, or add redundancy,

more recently the concept cooperative navigation (CN) has

been explored. In CN a member A of the group obtains

exteroceptive measurements such as range or bearing (or

both) to another member B and uses these measurements

together with B’s own position estimate, obtained through a

status broadcast, to improve its own position. Robots often

broadcast status information to coordinate with one another

or to provide telemetry information to an operator and are

equipped with sensors which enable them to locate other

members. As a result, adding the CN capability often does

not require any extra hardware and represents a cost-effective

way to improve the navigation accuracy of the individual

vehicles.

With the price and size of Global Positioning System

(GPS) units having dropped significantly in the past two

decades, it is now possible to outfit each member of large

groups of robots with its own unit. Having access to very

accurate, absolute position information at rates of several Hz

Fig. 1. An Autonomous Underwater Vehicle (AUV) on the crane and two
Autonomous Surface Craft (ASC) on deck after a cooperative navigation
experiment. The GPS-derived position of the ASCs is obtained by the
submerged AUV through an acoustic modem. Using time-stamped messages
and globally synchronized clocks on all vehicles the AUV is also able to
determine its range to the ASC through time-of-flight measurements.

has simplified the robot navigation problem significantly for

many areas. There are, however, many environments where

GPS signals are either intermittently or not available at all.

This mostly affects robots operating indoors or underground,

but also those operating underwater such as AUVs. Vehi-

cles operating in these environments may occasionally have

access to absolute position information by surfacing for a

GPS update in the case of an AUV, or when the camera

on an indoor robot recognizes a landmark with a known

position [1]. In between these absolute position updates,

robots have to rely on dead-reckoning sensors. When relying

only on dead-reckoning sensors the uncertainty in their

position estimate grows without bound.

For scenarios where some members have intermittent

access to absolute position information, the uncertainty of

their position estimate may be significantly lower than the

position uncertainty of those that rely solely on dead-

reckoning for a long period of time. By broadcasting their

low-uncertainty position estimate, all receiving members of

the group, which also obtain a range or bearing measurement

to the broadcasting vehicle, are then able to improve their

own estimate.

When robot A uses the position estimate of another robot

B to update his own, their position estimates become cor-

related. Not taking these cross-correlations into account can

have a negative effect if there is a chain of updates back to B,

often leading to an overconfidence in B’s position, estimate
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which then diverges as a result [2]. Various approaches

have been devised to either properly account for the cross-

covariance or to use very conservative uncertainty bounds

to avoid overconfidence. The resulting failure modes and

are outlined in later sections, but many of the algorithms

impose additional requirements which make them unfeasible

for many CN-scenarios.

Our approach requires that each robot includes additional

information within their status broadcast. The receiving

robots can then use this information to ensure that the cross-

covariances are properly accounted for. The approach does

not require centralized data storage and processing as all

updates are done locally on each vehicle using only data

from the broadcasting vehicle. It does not enforce a par-

ticular communication hierarchy or topology and individual

members can join and leave the group and do not need any

awareness of previous communications or the size of the

group. Unlike other methods, broadcasts do not need to be

received by all participating vehicles as each transmission

contains all the information which is required for a position

update which accounts for the cross-correlations.

The main motivation for our approach comes from work-

ing with AUVs (figure 1). In the harsh underwater envi-

ronment, an unreliable navigation estimate may result in

the loss of an expensive vehicle. When submerged, AUVs

have to rely on dead-reckoning sensors and the number

of surfacings for a GPS fix needs to be minimized to

save energy or maintain covertness in military applications.

Through CN, the surfacing of a single vehicle can then

benefit a large number of submerged vehicles. As submerged

vehicles can only communicate acoustically over a very slow

and unreliable channel [3], the approach can only rely on

unacknowledged broadcast-based communication. While the

underwater scenario enforces particularly hard constraints,

these constraints ensure that our approach works for many

other multi-robot applications outside a very controlled lab

environment.

II. RELATED WORK

Roumeliotis et al. have contributed a large body of work

to the field of CN. Early work relies on a central site for

data storage and processing [4]. With this setup, the authors

make useful insights into relationship between the number

of cooperating robots and the individual position uncertainty.

The result is an analytical expression for the upper bound on

the positioning uncertainty increase rate for the group [5]. In

another experiment, the central filter that keeps track of the

state and covariance of all vehicles is replaced by distributed

filters that run on the individual members. The exchange of

only local data is necessary, but as both vehicles are required

to transmit, this approach does not scale as well as others that

rely only on one-way broadcasts [6]. Caglioti et al. also use

a distributed filter approach. While they only require one-

way data exchange (broadcast), these broadcasts occur very

frequently and their method relies on perfect communication

as each vehicle is required to receive every broadcast.

The problem of fusing measurements from several sources

while properly keeping track of common information has

been addressed by Grime [7] and Nettleton [8]. Unlike

the work of Roumeliotis et al., they track the information

parametrization of the Gaussian rather than the standard

form. In the information form, the update step is sim-

ply an addition and joint information, which models co-

dependencies among different states, can be subtracted if the

communication topology is known.

A general approach to the problem of fusing correlated

estimates has been proposed by Julier and Uhlmann [9], [10].

Their Covariance Intersection (CI) algorithm fuses two dif-

ferent estimates for a random variable, each represented

by their estimated mean and covariance much like the

update step in the Kalman filter. The result is a posterior

covariance that guarantees consistency under the assumption

of Gaussian noise. Arambel et al. present an application

of the CI algorithm for a group of space vehicles, where

relative position measurements are communicated in a ring

topology [2]. Each of these works have examples of how

the state estimator can diverge if estimates are fused with

a simple Kalman update without accounting for correlation

among the estimates. A disadvantage of CI algorithm is that

it can only fuse two state estimates. Additionally, unlike

the standard Kalman Filter, it cannot perform a partial

update such as those that apply to vehicles that only have

a range or bearing sensor. As a result, robots that only

have a bearing sensor, such as a monocular camera, or have

only range information from time-of-flight-based techniques

cannot participate in a setup which relies on CI for the update

of position estimates.

The previous work presented thus far relies on the Kalman

Filter in its original and modified (CI) form, or its in-

verse, the information filter, to compute an estimate. Fox

et al. [11] use sample-based Markov techniques to per-

form cooperative localization. They represent the distribution

by a large number of Monte Carlo samples rather than

as a Gaussian distribution. This representation allows for

complex, multi-modal uncertainty distributions and avoids

problems with the linearization that is required for Kalman

Filter-based methods. Transferring the distribution between

vehicles requires a comparably fast communication channel

which might not always be available [12]. Their approach

also requires information exchange such that broadcast-based

approaches cannot be used, which further increases the

bandwidth necessary.

The remainder of the paper is structured as follows. In

section IV, we outline the assumptions we make for our

group of vehicles cooperating for localization. Section III

then gives a brief review of Extended Kalman Filter(EKF)-

based CN for the special case where only intra-vehicle range

measurements are available. Section V describes the Inter-

leaved Update (IU) algorithm that we propose to fuse intra-

vehicle range measurements together with status broadcasts

from other vehicles to update our own position estimate.

Section VI shows an example of the algorithm at work for a

group of vehicles over several time steps. Section VII shows
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simulated results for a group of cooperating vehicles and

shows how the naive approach of not taking proper care

of cross-correlations leads to an overconfident (inconsistent)

position estimate. Section VIII presents the conclusions and

provides an outlook to future work.

III. EXTENDED KALMAN FILTER (EKF)-BASED

COOPERATIVE NAVIGATION

EKF-based approaches are the algorithms most commonly

used for CN. All EKF-based methods model the estimated

random variables as Gaussians, typically parametrized in

terms of their mean and covariance, and generally assume

that the sensor noise is zero mean, white noise. The short-

comings of these methods, such as the unimodal distribution

of the state estimate and the error introduced through the

required linearization, have given rise to alternative meth-

ods [11],[12],[13]. The EKF outlined below describes a vari-

ant that only uses range measurements for its updates. For a

more detailed description of the EKF and how to incorporate

bearing measurements or range/bearing measurement pairs

please refer to [14].

For EKF-based CN, we assume that all n vehicles Vi, i =
[1 . . . n] maintain a vector xi(k) = [xi(k), yi(k), zi(k)]T that

contains an estimate of their position at time k, and the

covariance matrix

P i(k) =





σxx
2(k) σxy

2(k) σxz
2(k)

σyx
2(k) σyy

2(k) σyz
2(k)

σzx
2(k) σzy

2(k) σzz
2(k)





describing the uncertainty associated with that estimate.

A. Prediction

Whenever vehicle i = 1 obtains proprioceptive measure-

ments u1(k) from its dead-reckoning sensors, x1(k) and

P 1(k) are propagated

x1(k + 1) = g(u1(k),x1(k)) (1)

P 1(k + 1) = G1(k + 1)P 1(k)GT
1 (k + 1)

+Q1(k + 1) (2)

where Q1(k +1) is a diagonal matrix where the elements

contain the variance of the proprioceptive sensor noise,

which is modeled as mean-free Gaussian noise and G1(k+1)
is the Jacobian containing the partial derivatives of g

∂g(u1(k + 1),x1(k))

∂x1(k)

B. Update

If vehicle 1 at a later time l receives a broadcast from ve-

hicle 2 that contains x2(l) and P 2(l) together with an intra-

vehicle range measurement r1,2(l), it uses this information

to update its estimate of its own position as follows:

First, it computes what the predicted range z1,2(l) between

the two vehicles would be, based on their estimated position.

z1,2(l) = ‖x1(l) − x2(l)‖2

The difference between the predicted measurement and the

measured distance z1,2(l)−r1,2(l) represents the innovation.

It then builds the combined covariance matrix

P 1,2(l) =

[

P 1(l) 0

0 P 2(l)

]

and computes the Jacobian H1,2(l) that contains the

derivatives of the range measurement with respect to the

position of vehicle 1 and 2 (time index l omitted on matrix

components).

H1,2(l) =
[

∂r
∂x1

∂r
∂y

1

∂r
∂z1

∂r
∂x2

∂r
∂y

2

∂r
∂z2

]

Using the residual covariance and the variance

S1,2(l) = H1,2(l)P 1,2(l)H
T
1,2(l) + σr

and σr associated with the exteroceptive (range) sensor

we compute the Kalman gain

K1,2(l) = P 1,2(l)H
T
1,2(l)S

−1
1,2(l)

that represents a weighting factor for how much the

measurement will affect the updated position. Using the

innovation z1,2(l)−r1,2(l) and the Kalman gain, the updated

position estimate is

x1(l) = x1(l) + K1,2(l)
(

z1,2(l) − r1,2(l)
)

(3)

and the combined covariance is

P 1,2(l) =

[

P 1(l) 0
0 P 2(l)

]

=
(

I6×6 − K1,2(l)H1,2(l)
)

P 1,2(l) (4)

from which we can extract the updated covariance estimate

for vehicle 1 P 1(l). Note that we also obtain an updated

estimate for the position and covariance of vehicle 2 P 2(l)
and x2(l).

IV. PROBLEM STATEMENT

We make the following assumptions with regard to our

group of vehicles.

Vehicles

The group consists of an arbitrary number of

vehicles. Vehicles are not required to maintain a

hierarchy, but each of them has a unique id. No

vehicle needs to be aware of the size of the group.

Sensors

Each vehicle needs to have proprioceptive sensors

to obtain dead-reckoning results and a single or sev-

eral exteroceptive sensors to obtain a range, bear-

ing or both to another vehicle. While covariance

intersection, the standard algorithm for consistent

data fusion, requires a range and bearing estimate,

the particular strength of our approach lies in its
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ability to incorporate measurements from only one

such sensor.

Communication

Vehicle to vehicle communication is based on un-

acknowledged broadcast only. Our approach does

not require any vehicle to receive all messages that

were broadcasted.

V. THE INTERLEAVED UPDATE ALGORITHM

A. Initialization

For the Interleaved Update algorithm, each vehicle i at

time k now maintains a set X i(k) of state estimate vectors

together with a set Pi(k) of associated covariance matrices.

In the elements of X i(k) and Pi(k) the superscript q

indicates the filter consisting of the state x
q
i (k) and the

covariance P
q
i (k). As we will explain later, the maximum

size of the set is 2n where n is the total number of vehicles

cooperating for navigation.

X i(k) =
{

x1
i (k), . . . ,xq

i (k), . . . ,x2n

i (k)
}

Pi(k) =
{

P 1
i (k), . . . ,P q

i (k), . . . ,P 2n

i (k)
}

Before vehicle i receives information from any other vehicle

the only contents of X i(k) and Pi(k) are x1
i (k) and P 1

i (k).

X i(k) =
{

x1
i (k)

}

Pi(k) =
{

P 1
i (k)

}

B. Prediction

Each time vehicle i receives proprioceptive sensor read-

ings it uses the Kalman Filter prediction steps for state and

covariance (eq. (1) and (2)) to propagate x1
i (k) and P 1

i (k).

x1
i (k)

(1)
−→ x1

i (k + 1)

P 1
i (k)

(2)
−→ P

1

i (k + 1)

C. First Update

When vehicle i receives a broadcast from vehicle j at time

l, it first instantiates a second filter x2
i (l),P

2

i (l) by copying

the state and covariance matrix from x1
i (l),P

1

i (l) the forward

predicted version of the initial filter.

x2
i (l) = x1

i (l)

P
2

i (l) = P
1

i (l)

The vehicle also instantiates a matrix T i where each row

represents a filter and each column represents a vehicle

number. The entry in matrix T i(q, i) is the time when vehicle

i was last used to update filter q.

Using the Kalman update equations (eq. (3) and (4)), we

now only update x2
i (l) and P

2

i (l). After this update, our sets

X〉(l), Pi(l) and the matrix T i(l) look as follows.

All elements of column i in T i(l) are l as all filters are

forward predicted using (1) and (2) up to the actual time l.

Row 1 in T i(l) represents the filter which has never been

updated by any other vehicle and contains the initial state

forward predicted up to l.

X i(l) =
{

x1
i (l),x

2
i (l)

}

Pi(l) =
{

P 1
i (l),P

2
i (l)

}

T i(l) =

[

0 . . . 0 l 0 . . . 0 0 0 . . . 0
0 . . . 0 l 0 . . . 0 l 0 . . . 0

]

↑ ↑
i j

D. Subsequent Predictions

The first prediction for vehicle i after the update, prop-

agates both filters using eq. (1) and (2) to X i(l + 1) and

Pi(l + 1) and all elements in column i in T i(l + 1) are set

to l + 1.

T i(l + 1) =

[

0 . . . 0 l + 1 0 . . . 0 0 0 . . . 0
0 . . . 0 l + 1 0 . . . 0 l 0 . . . 0

]

↑ ↑
i j

Matrix T i therefore keeps track of which vehicles have been

used to update a particular filter as well as the age of the

updates. Predictions after l + 1 up to the next update are

propagated the same way, both filters are propagated and all

elements in column i of T i are set to the actual time. All

other columns remain unchanged.

E. Broadcast

Every time vehicle i sends out a broadcast, the transmitted

data consists out of X i, Pi and T i. By maintaining a state

x1
i on vehicle i which is continuously propagated and has not

been updated with information from vehicle j, we make sure

that a future broadcast from vehicle i received by vehicle j

contains a state which is not cross-correlated with vehicle j

and can therefore be used by vehicle j for an update.

F. Subsequent Updates

The general update case when vehicle i receives a broad-

cast from j after both vehicles have received broadcasts from

various other vehicles and have incorporated those to update

their navigation filters looks as follows.

We define Si as the set of all m vehicle ids which vehicle i

received updates from. Si not only contains the ids of which

vehicle i has directly received broadcasts from, but also those

ids which have been propagated to it through other vehicles.

The power set 2Si than contains all 2m possible subsets of

these ids. Each subset

A
1

i , . . . ,A
q

i , . . . ,A
2m

i ⊆ (2Si ∪ i) (5)

then corresponds to a filter maintained in x
q
i ,P

q

i which

maintains a state that has been updated by the ids in the

corresponding subset A
q

i and therefore has cross-correlations

with these vehicles. The information about which ids are in

the individual subsets is maintained in line q of T i as each

line in T i corresponds to a subset of Ai.
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Similarly there is a set Sj for all o ids which vehicle j

has received broadcasts from.

A
1

j , . . . ,A
p

j , . . . ,A
2o

j ⊆ (2Sj ∪ j)

When vehicle i receives X j ,Pj and T j from vehicle j it

first adds entries in X i,Pi and T i for all elements of Aj

which are not in Ai. As a result vehicle i then maintains

filters for a new set Ai

Ai ∪ Aj → Ai

Each filter x
q
i ,P

q

i represented by A
q

i is now updated without

introducing any additional cross-correlations. This means

that A
q
i = A

q

i . To update x
q
i ,P

q

i we now find all possible

combinations of sets from Ai and Aj s.t.

A
g

i ∪ A
h

j → A
q
i (6)

Each of these combinations represents a possible update for

x
q
i ,P

q

i

x
g
i

(3) with x
h
i−→ x

q
i (7)

P
g

i

(4) with P
h

i−→ P
q
i (8)

We now select g and h s.t. P
q
i has the smallest trace of all

possible combinations.

(g∗, h∗) = argmin
g,h s.t. (6)

(

trace
(

P
q
i

)

)

(9)

Using g∗ and h∗ determined through eq. (9) we use eq. (7)

to update the state.

x
g∗
i

(3) with x
h∗
i−→ x

q
i

Line q in T i is updated to reflect the age of updates.

T
q
i (i, u) = T

g∗

i (g∗, u) ∀u ∈ A
g∗

i

T
q
i (i, u) = T

h∗

j (h∗, u) ∀u ∈ A
h∗

j

All steps in section (V-F) are repeated for all 2n filters on

vehicle i and all other vehicles which overheard the broadcast

update their local filters accordingly.

G. Enforcing Constant Set Size

The amount of information which needs to be transmitted

during each broadcast, as well as the number of local

prediction and update steps grows with O(m2) where m is

the size of set Si as defined in section V-F. The amount

of data which needs to be transmitted per filter however

is fairly small (≈ 10 bytes) and the update of each filter

only requires 4 [2 × 6] · [6 × 6] matrix multiplications for a

3D environment where range and heading measurements are

available. Assuming a data packet size of 10 kBytes set sizes

up to 30 ids are feasible.

If CN is implemented on a group of robots which is

much larger than 30 it is worth noting that Roumeliotis et

al. show in [15] that for a group of robots with the same

level of uncertainty in their proprioceptive measurements the

uncertainty growth is inversely proportional to the number of

robots thus the contribution of each additional robot follows

a law of diminishing return. This suggests that set sizes of 30

and less are sufficient to obtain an improvement of navigation

accuracy which is close to the theoretical maximum obtained

when broadcasts of all available vehicles are incorporated.

Based on our available communications bandwidth and

available processing cycles we can choose an upper bound

b for the size of Si. If our set size grows larger than b we

can incorporate the new broadcast according to section V-F

and than resize Si by eliminating the id which contributes

the least amount of information. The resize process consists

of two steps. First we determine the vehicle (id) which con-

tributes the least amount of information. Second we remove

this id from Si and modify X i,Pi and T i accordingly.

1) Compare: One method to determine the vehicle with

id q which contributes the least amount of information is

to compare the trace difference between the filter which

was only updated by {q, i} with the filter that has the dead

reckoning result only {i}.

q∗ = argmin
q

(

trace
(

P
g
i

)

− trace
(

P h
i

)

)

∀q ∈ Si, q 6= i

P
g
i s.t. Ag = {i, q}

P h
i s.t. Ah = {i}

2) Eliminate: After we determined q∗ we remove all

filters depending on q∗ from our sets X i,Pi and obtain

our new sets X
−

i and P
−

i and our updated matrix T−

i by

removing all lines which have a non-zero entry in column

q∗.

X i
x

h
i if q∗ /∈Ah

−→ X
−

i (10)

Pi
P

h
i if q∗ /∈Ah

−→ P
−

i (11)

T i
T i(g,h) ∀g, with T i(g,q∗)=0

−→ T−

i (12)

VI. EXAMPLE

The four frames in figure 2 and the tables I through IV

show how the sets X i,Pi and the matrix T i evolve over

time.

k=1 Up to this point all four vehicles have only used

dead-reckoning information so none of their po-

sitions are cross-correlated. All sets X i,Pi only

contain a single state and covariance matrix.

k=2 Vehicle 1 broadcasts its state x1(2) which is re-

ceived by vehicle 2 and 3. Both vehicles instanti-

ate a second filter x2
2(2),P 2

2(2) and x3
2(2),P 2

3(2)
respectively which are updated with the broadcast

and range received from vehicle 1, while the other

filter in both vehicles are not.

k=3 Up to k=3 all filters (filter 1 in vehicle 1 and 4,

filter 2 in vehicle 2 and 3) are propagated using the

Kalman time prediction step. At k=3 the broadcast

from 2 is received at 4. As 2 has been previously

updated with 1 the set of filters received by 4

contains 2 new ids (1 and 2). Vehicle 4 therefore
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instantiates 3 additional filters, each containing a

possible permutation of S4 as specified in eq. (5).

k=4 At k=4 vehicle 3 receives a broadcast from vehicle

4. After the update vehicle 3 now maintains the

maximum set of 8 filters.

1
x1(1)

2
x2(1)

3
x3(1)

4
x4(1)

1
x1(2)

2
x1(2), x2(2)

3
x1(2), x3(2)

4
x4(2)

1 1
x1(3)

2
x1(2), x2(3)

3
x1(2), x2(3),
x3(3)

4
x1(2), x2(3)x4(3)

x1(4)
2

x1(2), x2(4)

3
x1(2), x2(3)
x3(4), x4(4)

4
x1(2), x2(3)x4(4)

Fig. 2. Four vehicles exchanging navigation information for Cooperative
Navigation from time k=1 (top left) to k=4 (bottom right). The arrows
indicate which vehicle broadcasts during a particular time step and which
vehicles received the broadcast. Below each vehicle are the states which
were used to update this vehicle’s various position filters.

TABLE I

CONTENTS OF X ,P AND T AT TIME k = 1

T1(1) X1(1) P1(1)

1 x
1

1
(1) P

1

1(1)

T2(1) X2(1) P2(1)

1 x
1

2
(1) P

1

2(1)

T3(1) X3(1) P3(1)

1 x
1

3
(1) P

1

3(1)

T4(1) X4(1) P4(1)

1 x
1

4
(1) P

1

4(1)

TABLE II

CONTENTS OF X ,P AND T AT TIME k = 2

T1(2) X1(2) P1(2)

2 x
1

1
(2) P

1

1(2)

T2(2) X2(2) P2(2)

2 x
1

2
(2) P

1

2(2)

2 2 x
2

2
(2) P

2

2(2)

T3(2) X3(2) P3(2)

2 x
1

3
(2) P

1

3(2)

2 2 x
2

3
(2) P

2

3(2)

T4(2) X4(2) P4(2)

2 x
1

4
(2) P

1

4(2)

TABLE III

CONTENTS OF X ,P AND T AT TIME k = 3

T1(3) X1(3) P1(3)

3 x
1

1
(3) P

1

1(3)

T2(3) X2(3) P2(3)

3 x
1

2
(3) P

1

2(3)

2 3 x
2

2
(3) P

2

2(3)

T3(3) X3(3) P3(3)

3 x
1

3
(3) P

1

3(3)

2 3 x
2

3
(3) P

2

3(3)

3 3 x
3

3
(3) P

3

3(3)

2 3 3 x
4

3
(3) P

4

3(3)

T4(3) X4(3) P4(3)

3 x
1

4
(3) P

1

4(3)

2 3 x
2

4
(3) P

2

4(3)

3 3 x
3

4
(3) P

3

4(3)

2 3 3 x
4

4
(3) P

4

4(3)

TABLE IV

CONTENTS OF X ,P AND T AT TIME k = 4

T1(3) X1(4) P1(4)

4 x
1

1
(4) P

1

1(4)

T2(4) X2(4) P2(4)

4 x
1

2
(4) P

1

2(4)

2 4 x
2

2
(4) P

2

2(4)

T3(4) X3(4) P3(4)

4 x
1

3
(4) P

1

3(4)

2 4 x
2

3
(4) P

2

3(4)

3 4 x
3

3
(4) P

3

3(4)

2 3 4 x
4

3
(4) P

4

3(4)

4 4 x
5

3
(4) P

5

3(4)

2 4 4 x
6

3
(4) P

6

3(4)

3 4 4 x
7

3
(4) P

7

3(4)

2 3 4 4 x
8

3
(4) P

8

3(4)

T4(4) X4(4) P4(4)

4 x
1

4
(4) P

1

4(4)

2 4 x
2

4
(4) P

2

4(4)

3 4 x
3

4
(4) P

3

4(4)

2 3 4 x
4

4
(4) P

4

4(4)

VII. SIMULATION

To validate that the Interleaved Update (IU) algorithm

provides consistent estimates we ran a simulation where three

moving vehicles took turns exchanging navigation informa-

tion. Whenever a vehicle did broadcast position information

the other two would obtain this information together with

a noisy range measurement. No vehicle got a position fix

through a simulated GPS update. We ran several simulations

where all vehicles used the standard EKF algorithm and

naively incorporated every broadcast they obtained, ignoring

cross-correlations. We also ran the exact same setup several

times with all vehicles using the IU algorithm. Figure 3

and 4 IU show a snap-shot of both runs at t = 2000 s. All

vehicles started at (0, 0). Vehicle 1 and 2 ran in concentric

squares while vehicle 3 ran on a north-south track. For each

vehicle “+” marks the estimated position at this time and

centered around it is the 3 σ-ellipse, while “×” marks the

true position. The enlarged sections for each of the vehicles

show that the distance between the true and the estimated

position in figure 3 is similar to the distance in figure 4

(note the change of scale). However, while the true position

for all vehicles is outside the 3 σxx-bound (99.6% confidence

interval) in figure 3 it is well within it in figure 4. Figure 5

illustrates the evolution of the 1D position error and the

associated covariance over time. The top plot shows the

results for the EKF estimator. For a long time within the
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Fig. 3. Tracks of all vehicles and their position at t = 2000 s. All
vehicles are incorporating external information using a standard EKF. The
enlargements show that for all three vehicles the true position (×) is outside
the 3 σ-ellipse centered around the estimated position (+), indicating an
overconfident estimate.
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Fig. 4. Tracks of all vehicles and their position at t = 2000 s. All
vehicles are incorporating external information using the IU algorithm. The
enlargements show that for all three vehicles the true position (×) is within
the 3 σ-ellipse centered around the estimated position (+).

observed interval the error in the absolute position estimate

for the x-component (|x̃|) is outside the 3 σxx-bound, a clear

indication that the estimator is over confident. The position

error grows slowly as no vehicle has access to an absolute

position update. This is however not reflected in the 3 σxx-

bound which stays constant. The bottom plot shows the

estimation error for the IU algorithm. Here, the 3 σxx-bound

grows and the error estimate is well within it. Note that the

absolute position error is slightly larger in the IU case. This is

due to the fact that the IU algorithm updates very selectively

and therefore incorporates less corrective measurements.

The slightly larger error is however properly accounted for

through a much higher 3 σxx-bound and will stay within the

predicted bound, while the EKF’s overconfidence may cause

it to diverge, leading to a rapidly increasing estimation error.
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Fig. 5. Position error in the x-direction for one of three vehicles exchanging
navigation data as estimated by (top) the standard EKF and (bottom) the
Interleaved Update algorithm.

To asses the performance of the standard EKF vs. that of

the IU algorithm we computed the Normalized Estimation

Error Squared (NEES) as described in [16] for 20 runs (ten

standard EKF and ten IU).

ǫ(k) = x̃(k|k)T P (k|k)−1 x̃(k|k)

For each time k we compute the N = 10 average NEES

ǫ(k).

ǫ(k) =
1

N

N
∑

i=1

ǫi(k) (13)

Under the hypothesis H0 that the filter is consistent and

under the linear-Gaussian assumption Nǫ(k) will have a

chi-square density with N nx degrees of freedom, where

nx is the dimension of x. The hypothesis H0, that the

state estimation errors are consistent with the filter-calculated

covariances, also called chi-square test, is accepted if ǫ(k) ∈
[r1, r2] where the acceptance interval is determined such that

P {ǫ(k) ∈ [r1, r2] |H0} = 1 − α

The two-sided 95 % region for a 20 degree of freedom

(Nnx = 10 · 2 = 2 = 20) chi-square distribution is divided

by N is
[

χ2
20(0.025)

N
,
χ2

20(0.975)

N

]

= [0.96, 3.42] . (14)

Figures 6 and 7 show the 10-run average NEES according to

(13) and the boundaries determined in (14). For the standard
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Fig. 6. Averaged NEES for 10 runs using the standard EKF.
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Fig. 7. Averaged NEES for 10 runs as shown using the standard IU.

EKF update the NEES quickly grows above the upper bound

(figure 6) and indicates that this approach not only leads to

inconsistent results, but that this inconsistency is growing.

For the IU algorithm (figure 7) between 5 % and 9 % of the

values fall outside the 95 % region which is acceptable [16].

VIII. CONCLUSION AND FUTURE WORK

In this paper we presented an algorithm which addresses

the problem of overconfidence in the position estimate of

robots exchanging navigation information for cooperative

navigation. The assumptions made for our approach are

those of real-world robot setups and it allows for vehicles to

dynamically join and leave the group of cooperating robots.

The algorithm can be adjusted to use a fixed amount of com-

munication overhead and processing cycles such that it can

be adapted to the available CPU cycles and communication

bandwidth.

Future work will investigate how different set sizes will

affect the navigation accuracy, especially in heterogeneous

groups where some robots have very accurate dead-reckoning

sensors or can often gain access to absolute position informa-

tion through GPS. We also plan on deploying the algorithm

on a fleet of cooperating AUVs.
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