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Abstract— Recent applications of robotics often demand two
types of spatial awareness: 1) A fine-grained description of
the robot’s immediate surroundings for obstacle avoidance
and planning, and 2) Knowledge of the robot’s position in a
large-scale global coordinate frame such as that provided by
GPS. Although managing information at both of these scales is
often essential to the robot’s purpose, each scale has different
requirements in terms of state representation and handling of
uncertainty. In such a scenario, it can be tempting to pick either
a body-centric coordinate frame or a globally fixed coordinate
frame for all state representation. Although both choices have
advantages, we show that neither is ideal for a system that must
handle both global and local data.

This paper describes an alternative design: a third coordinate
frame that stays fixed to the local environment over short time-
scales, but can vary with respect to the global frame. Careful
management of uncertainty in this local coordinate frame
makes it well-suited for simultaneously representing both locally
and globally derived data, greatly simplifying system design
and improving robustness. We describe the implementation
of this coordinate frame and its properties when measuring
uncertainty, and show the results of applying this approach to
our 2007 DARPA Urban Challenge vehicle.

I. INTRODUCTION

Mobile robots generally must solve two problems:

1) What is my location?

2) What do I do now, given my location?

Although these tasks are often addressed separately in the

literature, real systems must employ mutually compatible

solutions for both tasks. This constraint often forces the

designer to make fundamental compromises, such as in the

choice of coordinate frame used by the localization algorithm

(Problem 1) and the planning algorithm (Problem 2).

A. Localization and the Global Frame

A localization algorithm, for the purposes of this paper,

provides a coordinate representation of the robot’s position

in some globally consistent coordinate frame. This position

usually consists of a point (x, y, z) and may include addi-

tional information such as velocity, orientation, or angular

velocity. The localization algorithm may be a commodity

solution such as the Global Positioning System (GPS) which

provides coordinates directly in an Earth-centered frame, or

an approach such as Simultaneous Localization and Mapping

(SLAM) that provide coordinates within a dynamically-

constructed map of the environment. In both cases, we con-

sider the position estimates to be from a global coordinate

frame because each attempts to measure the robot’s position

relative to some truth which is known to be unique, even

though the position estimate itself is noisy.

B. Planning and the Body Frame

When a mobile robot plans its next action, one of its most

important considerations is its immediate surroundings, so

that it can ensure that the action is carried out safely and

accurately. For those robots that have sensing mounted on-

board, the most straightforward way to represent this sensor

data is to use a body coordinate frame where the current

robot position is defined exactly as the origin of the frame

and sensor data is represented relative to the robot position,

possibly with a noise model. A powerful advantage of the

body frame is that by definition, uncertainty about the sensor

data is conditional with respect to the robot’s position. In

other words, relative motions of the robot from its current

position can be predicted with minimal uncertainty against

the sensor data.

C. Combining Global and Local Information

This paper considers systems that must combine both

global and local information simultaneously. For example, a

ground robot may have GPS coordinates of known reference

points (global state) and sensor data that tells it where

obstacles are located (local state). For efficient operation of

the planning algorithms, both types of information need to

be combined into a single coordinate frame.

The first possibility is to use the global frame for all data.

Since the GPS reference points are already represented in

the global frame, their coordinates are unmodified and their

uncertainty, if any, is not further transformed. The robot’s

position and its uncertainty are estimated directly by the

localization algorithm. The sensor data, which started with

some uncertainty, is transformed into the global frame where

2009 IEEE International Conference on Robotics and Automation
Kobe International Conference Center
Kobe, Japan, May 12-17, 2009

978-1-4244-2789-5/09/$25.00 ©2009 IEEE 3794



Global Frame

 

 
Representing Uncertainty

Local Frame

robot

globally referenced

locally sensed

Body Frame

Fig. 1. Graphical representation of the uncertainties (using an ellipsoidal confidence interval) in a typical robot scenario that involves representing global
and local state in a single coordinate system. On the left, the global frame is used such that globally referenced points are in their native coordinate system
and other quantities, the robot position and its sensor data, are transformed into the global frame. On the right, globally referenced points and local features
are transformed into the body frame. In the center, our “local frame” representation is used. Straight lines represent the motion of the features over time
in their respective coordinate systems.

it becomes even more uncertain since it is conditional with

respect to the noisy robot position. These properties of the

uncertainty are depicted in the left panel of Figure 1, using

ellipses to approximate the 95% confidence interval of the

uncertainty.

Besides this additional uncertainty, another reason a global

frame is poorly suited for representation of all state is that

global localization is often subject to multi-modal uncer-

tainty distributions. For example, with GPS, the maximum

likelihood estimate of position may change as much as

several meters as different satellites go in and out of view or

obstructions in the environment create multipath interference.

A real example of such a discontinuity is shown in Figure 2.

Localization methods such as SLAM also exhibit similar

behavior over time as the maximum likelihood position

estimates may temporarily lock on to incorrect local features.

There is a real-life example of state estimation in the

global frame going awry. In the 2005 DARPA Grand Chal-

lenge, Alice, the vehicle from Team Caltech, stored all

obstacle information in the global frame, registered against

GPS. During the final event Alice experienced GPS inter-

ference from overhead power lines. As the GPS interference

corrected itself, a large position discontinuity took place in

the global frame that caused previously measured sensor data

to become invalid with respect to the new position estimate.

Alice continued to respect this previous, incorrect data, and

eventually drove into a concrete barrier [1]. For the 2007

race, Caltech instead adopted an approach much like the one

described herein to avoid similar problems.

For these reasons, we believe the global frame is unsuit-

able for simultaneous state estimation of local and global

data.

A second possible approach for state estimation is to use

the body frame exclusively. The robot position is represented

exactly in this frame since it defines the origin. The sensor

data is represented relative to this robot position with some

noise, only from the sensor itself or from its time evolution.

Globally represented data, such as GPS reference points,

are transformed into the body frame using the localization

algorithm, and take on the uncertainty of the robot position
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Fig. 2. (a) A position estimate affected by a GPS unit experiencing a
gradually increasing bias error followed by a small jump. (b) A position
estimate affected by a GPS unit experiencing a strong and persistent bias
error. Data is taken with an Applanix POS-LV 220 during a drive through
Cambridge, MA. Despite a very high-end navigation system, the robot’s
relative motion estimates are corrupted by GPS error, which would result
in significant errors for maps constructed in a global reference frame.

as measured in the global frame. Compared to the global

frame, the body frame has the advantage that both the robot

position and sensor data are represented with minimal noise,

making it ideal for accurate motion planning.

The primary disadvantage of the body frame representa-

tion is that all data must be recomputed whenever the robot

moves, since sensor data and global data will change position

relative to the robot as seen in the right panel of Figure 1.

This update can pose a challenge in a working system

in terms of computational efficiency, code complexity, and

synchronization between different logical modules.

D. The Local Frame

To solve these problems, we propose an alternative coordi-

nate frame for global and local state representation—the “lo-

cal frame”. The local frame is a smoothly varying Euclidean
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coordinate system, with arbitrary origin, into which sensor

information is projected. The local frame has the desirable

property that the vehicle always moves smoothly through

this coordinate system; in other words, spatial relationships

in the local frame are very accurate over short time scales

but may drift over longer time scales.

This smoothness property makes the local frame ideal

for registering the sensor data for the vehicle’s immediate

environment. An estimate of the coordinate transformation

between the local frame and the GPS reference frame is

updated continuously. This transformation is needed only

when projecting a GPS feature, such as a waypoint, into the

local frame. All other navigation and perceptual reasoning is

performed directly in the local frame.

In the local frame, the robot position is represented without

uncertainty, but unlike the body frame, is not necessarily

fixed at the origin. Instead, the robot moves in the local

frame according the best available relative motion estimate.

This estimate could come from an Inertial Measurement

Unit (IMU) or Visual Odometry [2], both of which provide

smooth and accurate relative motion estimates over short

time scales. Although sensor data should still be updated

with each movement of the robot, the maximum likelihood

position of an older measurement will not change from its

previous position in the local frame. Thus, in many cases,

no update is necessary. A graphical representation of these

uncertainties is shown in the center panel of Figure 1.

II. RELATED WORK

Other groups have independently arrived at the same

concept of a smoothly varying local frame, and briefly

mention its robustness against GPS discontinuities [3], [4],

[5]. At present, we are not aware of a detailed analysis of the

local frame in the published literature, such as a probabilistic

analysis or its amenability to system simplification.

Coordinate frames are a central concept in sensor fu-

sion algorithms such as the widely used Extended Kalman

Filter (EKF) [6] or more advanced approaches such as

FastSLAM [7] and pose graph optimization [8]. However,

these algorithms solve the more complicated problem of

representing the robot trajectory and sensor observations for

all time in a single, fully-consistent coordinate system, which

we consider a global frame. In our concept for the local

frame, we seek to represent only enough state to address

the robot’s immediate path planning and obstacle avoidance

needs.

We also distinguish our local frame from some approaches

to SLAM that make use of multiple “local maps”. A

popular technique for efficient large-scale mapping is to

incrementally construct multiple sub-maps of a region while

estimating geometric relationships across sub-maps [9], [10].

These sub-maps are often called local reference frames, but

are based on a significantly different concept from what we

propose in this paper.

Castellanos et al. proposed a map-building technique in

which feature poses are always represented in the robot’s

body frame, and showed reduced linearization errors when

compared to map-building in a global frame [11]. This idea

shares some of our motivations, such as eliminating uncer-

tainty about the robot’s pose, but operates exclusively in the

body frame. The primary benefit of the local frame proposed

here is to provide improved robustness in performing short-

term processing of sensor data, to support operations such as

real-time path planning in the presence of static and moving

obstacles.

III. APPROACH

Using the local frame in a robotic vehicle requires two

data sources:

• A localization algorithm that computes vehicle position

in the global frame, preferably including a measurement

of uncertainty.

• A relative motion estimator such as one obtained from

an Inertial Measurement Unit (IMU), wheel odometry,

or visual odometry.

The localization algorithm can be used to constantly

update the transformation between the local frame and

the global frame. This transformation is needed whenever

globally registered data needs to be placed in the local

frame for use by planning algorithms. Over short timescales,

this transformation will stay relatively static because the

vehicle’s position moves through the local frame much the

same way as it moves through the global frame. Because the

transformation changes slowly, the localization algorithm can

be run relatively infrequently, say at 1Hz, unlike traditional

inertial navigation systems which run at 100Hz or more.

The relative motion estimator is used to update the ve-

hicle’s position in the local frame. There are several ways

to get this relative motion estimate. An IMU could be

used, integrating the velocities and accelerations it measures.

Clever filtering of this data can produce a very smooth

estimate of relative motion. Alternatively, if one already has

a fully integrated inertial navigation and GPS system, the

output velocities from such a system can be integrated to

produce the relative motion estimate, provided they are not

overly influenced from GPS data. This approach was used

by the authors for the MIT Urban Challenge vehicle. Lastly,

pure wheel odometry or visual odometry could be used for

a relative motion estimate.

A. Tracked State

Formally, we denote the local frame at time t as Lt. The

vehicle’s pose with respect to its local frame is denoted as

x
Lt

t . The essential principle of the local frame is that x
Lt

t

is a constant with no noise. The vehicle pose with respect

to the global frame is x̂
G
t , as computed by the localization

algorithm. This quantity is noisy and should be tracked with

some model of its uncertainty. Then x
Lt

t can be used together

with x̂
G
t to define a transformation TG

Lt
that transforms

a point pG, some coordinate in the global frame, into a

coordinate in the local frame.

We also have to track local sensor measurements over time

in the local frame. This data, which we denote as MLt , may

constitute an obstacle map for motion planning, task-specific
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goals, or any other quantity that is measured relative to the

robot’s position. This data is noisy, and should be tracked

with some model of uncertainty.

In contrast to traditional sensor fusion techniques, we do

not use current sensor observations to refine the position esti-

mates of previously sensed features. For the DARPA Urban

Challenge we did not find this extra refinement necessary.

However, it would be possible to devise a more advanced

approach that used an EKF or other Bayesian model to refine

the position estimates for local features over short timescales,

while still using the concept of a local frame.

B. Time Evolution

The relative motion estimator, described earlier, measures

the change in robot pose over time. For some time t we will

denote this change as ut. We also define a function F that,

given the robot’s current pose and ut, will compute the pose

at time t + 1:

x
Lt

t+1 = F
(

x
Lt

t ,ut

)

+ w
Lt

t (1)

where w
Lt

t represents a noise term with covariance Qt. Since

the current vehicle pose must always be a noiseless constant

in the local frame, we define a new local frame Lt+1 (instead

of using Lt) that does not include the noise term from the

time evolution:

x
Lt+1

t+1 = F
(

x
Lt

t ,ut

)

. (2)

Note that this equation is not an approximation of Equation 1.

Rather, it is the definition of Lt+1.

Since we have migrated the robot pose from Lt to Lt+1,

we must also do the same for the map MLt . To do so, we

construct a rigid-body transformation TLt

Lt+1
from the differ-

ence in pose between x
Lt

t+1 and x
Lt+1

t+1 (which is noisy). This

transformation updates a measurement in Lt to be in Lt+1.

Conveniently, the maximum likelihood values of x
Lt

t+1 and

x
Lt+1

t+1 are identical, since the only difference between them is

the noise term. Thus, TLt

Lt+1
has a maximum likelihood value

which is the identity function and the maximum likelihood

values of MLt are updated to be MLt+1 unchanged. How-

ever, this transformation still introduces noise. If covariances

are being used to model the noise of MLt , these covariances

must be updated.

C. Tracking Uncertainty

One way to update covariances is by linearizing TLt

Lt+1

about its mean and the map mean, similar to the method

described by Smith et al. [6]. We decompose the transfor-

mation TLt

Lt+1
into a rotation about the vehicle followed by a

translation, and then describe the updated position of a single

map feature mi with covariance ΣLt

mi
as:

m
Lt+1

i = TLt

Lt+1
(mLt

i )

= RLt

Lt+1
(mLt

i − xLt) + t
Lt

Lt+1
(3)

We update the covariance of the map feature according to:

ΣLt+1

mi
= J1Σ

Lt

mi
J⊤1 + J2QtJ

⊤

2 (4)

where J1 and J2 denote the Jacobians corresponding to the

transformation operation. They are simplified by the assump-

tion that the mean of TLt

Lt+1
is the identity transformation.

In the case where map features are 2D points (x̂mi
, ŷmi

)
and the robot pose is described as (xt, yt, θt), the individual

Jacobians evaluate to J1 = I2×2 and

J2 =

[

1 0 −
(

ŷmi
− yt

)

0 1
(

x̂mi
− xt

)

]

(5)

The cross covariances of map features can be updated in

a similar fashion, although in many cases we require only

an understanding of the individual covariances.

Approximating the covariance growth in this fashion has

the disadvantage of increasing linearization error for each

time step. Another approach is to build a single non-linear

transformation that updates each sensor measurement from

its captured form directly into the latest local frame, reducing

linearization error. These covariance estimates are often not

needed at every time step, and can be computed only when

a particular quantity is needed.

In summary, this time evolution exhibits a valuable prop-

erty of the local frame: after each prediction step, the robot’s

own pose has no uncertainty and the maximum likelihood

poses of map features do not change. This distinguishes it

from a pure body frame approach where the poses of map

features change after each time evolution step.

D. Globally Referenced Features

The mapping of a globally referenced feature to the local

frame is straightforward if we assume Gaussian probabil-

ities. Consider an uncertain 2D global waypoint p̂
G
wp with

covariance ΣG
wp, and represent the uncertainty of the robot’s

global pose x̂
G

as the covariance matrix ΣG
xt

. The mapping

is typically a rigid body transformation of the form,

p̂
Lt

wp = RGt

Lt

(

p̂
G
wp − x̂

G
)

+ t
Gt

Lt
(6)

where RGt

Lt
is a rotation matrix of θG

L radians. The covari-

ance matrix is transformed by linearizing about the robot’s

mean estimates:

ΣLt

wp = JxΣG
xt

J⊤x + JwpΣ
G
wpJ

⊤

wp (7)

where Jx and Jwp are the Jacobians corresponding to the

transformation.

Jx =

[

− cos(θG
L ) sin(θG

L ) −ŷLt

wp − tGt

yLt

− sin(θG
L ) − cos(θG

L ) x̂Lt

wp − tGt

xLt

]

Jwp =

[

cos(θG
L ) − sin(θG

L )
sin(θG

L ) cos(θG
L )

]

(8)

E. New Map Elements

New elements can be added to the local frame map MLt .

In most cases, one already has a function GBt that, given a

raw sensor measurement z, projects this measurement into

the body frame Bt:

mBt = GBt(z) + v (9)
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Fig. 3. The change in uncertainty of a map feature is dependent on the
robot’s path and the uncertainty of its relative motion estimates. Here we
show simulated uncertainty estimates for a single map feature observed only
once and coincident with the robot’s initial pose. Parameters for relative
motion uncertainty were chosen to mimic a low-cost MEMS IMU and
odometer, with the vehicle traveling at a constant speed of 10m/s. The
determinant of the feature’s covariance is used as a general measure of its
uncertainty.

where v is a noise term. Since the transformation between

body frame and local frame is noiseless, it is easy to

construct a new function GLt directly from GBt and x
Lt

t

that transforms the raw measurement directly into the local

frame:

mLt = GLt(z) + v (10)

As in the time evolution step, covariance can be estimated

using a compounding operation that makes use of the Jaco-

bian of GLt .

IV. DISCUSSION

Figure 3 shows how the uncertainty of a prototypical

map feature evolves over time as the vehicle moves. In this

case, a single map feature was measured once at t = 0 in

simulation and then its covariance was tracked over time as

the vehicle moves in various simulated paths. As described

previously, the maximum likelihood estimate of the feature’s

position remains constant throughout this simulation—only

the covariance changes. This simulation shows that the local

frame is able to capture some of the nuance of feature

uncertainty even though the feature’s position is unchanging.

Of special note is the fact that over short time periods,

the accumulated map uncertainty is insignificant relative to

the scale at which the vehicle is operating. With sufficiently

accurate motion and sensor models, this allows the vehicle

to construct essentially noise-free maps suitable for local

motion planning over short time horizons.

The local frame was put to the test in the 2007 DARPA

Urban Challenge when it was used for all state estimation

purposes on Team MIT’s vehicle [12]. One critical module

of our team’s architecture was the drivability map, which

served as the primary interface between perception and path

planning. By performing all processing for creation of the

drivability map in the local frame, the robustness of the

overall system was significantly improved.

In our system, an Applanix POS-LV 220 INS system was

used for GPS and inertial measurement. Translational and

rotational velocities output by the Applanix were integrated

to produce the relative position estimates needed for local

frame maintenance. A single process was responsible for

maintaining and broadcasting the vehicle’s pose in the local

frame as well as the most recent local-to-GPS transformation.

These messages were transmitted at 100Hz.

Figure 2 shows some sample data from the MIT vehicle

during a drive in Cambridge in which GPS interference

caused errors in the localization algorithm. Nevertheless,

the relative position estimates were accurate over short

timescales. Figures 4 and 5 show the result of these trajecto-

ries when used to build obstacle maps in the local and global

frames. Using the global frame causes previously measured

obstacles to move with GPS discontinuities. Then, when the

obstacles are detected again they appear at a different place

in the map, causing smearing. In contrast, the local frame

does not exhibit these problems because it is based only on

relative position estimates, which remain smooth.

V. CONCLUSION

With the local frame, we have shown that local and

global data can be fused seamlessly in a single map with

minimal noise. The local frame does not suffer from the

increase in uncertainty that results when the global frame

is used for state estimation. Furthermore, multi-modal noise

characteristics common to global state estimators such as

GPS do not cause problems for maps generated in the local

frame.

We have demonstrated the local frame on a real system

during the 2007 DARPA Urban Challenge without suffering

any navigation problems due to GPS discontinuities. We have

also applied the local frame to smaller indoor robots as well

as an autonomous forklift.

We have also discussed how the local frame can be cheaper

to maintain than an equivalent map in the body frame

because maximum likelihood estimates for the location of

sensed features do not change as the vehicle moves, and

probabilistically justified assumptions about map uncertainty

allow for simple map updates.

Discussions with other teams that participated in the

Urban Challenge revealed that many have come to the same

conclusions we have about the disadvantages of the global

and body frames. Most of the top-performing teams in the

Urban Challenge used a state representation very similar to

the local frame, although we believe this paper is the first to

describe such an approach in any detail.

By documenting the local frame approach in this paper,

we hope that others will consider using it when developing

ground robots that require fusion of global and local state.

We also hope that manufacturers of Inertial Navigation

Systems will consider providing data from their systems,

in particular, the relative position estimate, that enable easy

implementation of the local frame. It would be especially

helpful if these systems could provide a relative position

estimate even in the complete absence of a GPS signal.
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