
MIT Open Access Articles

A High-Rate, Heterogeneous Data 
Set from the Darpa Urban Challenge

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Huang, A. S. et al. “A High-rate, Heterogeneous Data Set From The DARPA Urban 
Challenge.” The International Journal of Robotics Research 29.13 (2010): 1595–1601.

As Published: http://dx.doi.org/10.1177/0278364910384295

Publisher: Sage Publications

Persistent URL: http://hdl.handle.net/1721.1/73537

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/73537
http://creativecommons.org/licenses/by-nc-sa/3.0/


A high-rate, heterogeneous data set from the DARPA Urban Challenge

Albert S. Huang Matthew Antone† Edwin Olson⋆ Luke Fletcher David Moore Seth Teller
John Leonard

MIT CSAIL †BAE Systems ⋆University of Michigan
Cambridge, MA USA Burlington, MA USA Ann Arbor, MI USA

{ashuang,lukesf,dcm,teller,jleonard}@mit.edu matthew.antone@baesystems.com ebolson@umich.edu

Abstract— This paper describes a data set collected by MIT’s
autonomous vehicle Talos during the 2007 DARPA Urban
Challenge. Data from a high precision navigation system, 5
cameras, 12 SICK planar laser range scanners, and a Velodyne
high density laser range scanner were synchronized and logged
to disk for 90km of travel. In addition to documenting a
number of large loop closures useful for developing mapping
and localization algorithms, this data set also records the first
robotic traffic jam and two autonomous vehicle collisions.

It is our hope that this data set will be useful to the
autonomous vehicle community, especially those developing
robotic perception capabilities.

I. I NTRODUCTION

In the 2007 DARPA Urban Challenge, 11 autonomous land
vehicles attempted to navigate a 90 km course in a mock
urban environment. The race course itself varied widely and
included high curvature roads, stretches of highway, and
a steep and narrow dirt road. Autonomous vehicles were
required to obey traffic rules while avoiding each other and
dozens of other human-driven vehicles.

In this paper, we describe the sensing and data collection
capabilities of the MIT entry to the Urban Challenge, and
present a data set collected by the vehicle during the race.
We also discuss its utility towards the development of future
algorithms and capabilities. The actual algorithms used are
described elsewhere [Leonard et al., 2008].

This data set spans 7 hours of autonomous operation,
from early morning through late afternoon. The environ-
ment through which the vehicle traveled is recorded in
great detail by a number of onboard cameras and laser
range finders. The data set additionally records hundreds
of encounters with both human- and robot-driven vehicles.
Most encounters were at road intersections or in the middle
of a road approaching vehicles traveling in the same or
opposite direction. Two encounters resulted in collisionswith
other robot-driven vehicles. There are very few pedestrians
documented in this data set, as the course was not deemed
safe for people traveling on foot.

It is our hope that this data set will be useful for the
development of robotic perception algorithms, and for the
development of autonomous vehicles in general. It provides
a unique view of the Urban Challenge as seen by one of the
robotic contestants, and has been immensely useful to the
improvement of our own algorithms and system design.

Fig. 1. The MIT Urban Challenge vehicle used to capture the presented
data set. The vehicle is equipped with a high-precision GPS/INS, calibrated
cameras, SICK laser range scanners, and a Velodyne 3D scanner.

II. DATA CAPTURE

Our vehicle is a modified Land Rover LR3, chosen for
its payload capacity, small turning radius, and all-terrain
driving capabilities. Custom front and roof fixtures were
fitted, permitting sensor positions to be tuned during system
development. Wherever possible the fixtures were engineered
to protect the sensors from collisions. The stock vehicle was
integrated with the following additional sensors:

• Applanix POS-LV 220 GPS/INS
• 12 SICK LMS 291-S05 LIDARs
• Velodyne HDL-64e LIDAR
• 5 Point Grey Firefly MV Firewire cameras

An in-vehicle Quanta blade server system provided com-
putational power, and consisted of 10 quad-core computers
connected by gigabit ethernet.

A. Sensor Description

The Applanix POS-LV 220 [Applanix, 2010] was used
for world-relative position and orientation estimation ofthe
vehicle. It combines differential GPS, a 1-degree of drift per
hour rated IMU, and a 1024-count wheel encoder to estimate
the vehicle’s position, orientation, velocity, and rotation rates.
Only the fused result of the Applanix pose estimates are
provided in this data set; the raw Applanix data is not
available.



(a) (b)

Fig. 2. Sensor fields of view. (a) The FOV for each of the five cameras
is shown in blue. The two forward facing cameras differ primarily in focal
length, and the side cameras are pitched down. (b) Our vehicleused seven
horizontally-mounted180◦ planar LIDARs with overlapping fields of view.
The 3 LIDARs at the front and the 4 LIDARs at the back are drawn
separately so that the overlap can be more easily seen. An additional 5
roof-mounted pushbroom LIDARs are not shown here.

The SICK LIDAR [Sick, 2010] units generate 180 point
scans at 1 degree spacing, with each scan offset 0.25 degrees
from the previous scan. The timing of each 180-point scan is
individually synchronized using a method robust to jitter in
our Linux cluster. The SICK LIDARs are employed in two
configurations: “skirt” units roughly parallel to the ground
plane at bumper-height, and “pushbroom” units mounted on
the roof with a downward pitch.

The Velodyne HDL64E [Velodyne, 2007] is a 3-D laser
scanner composed of 64 lasers mounted on a spinning head.
It produces approximately one million range samples per
second, performing a full 360-deg sweep at 15 Hz. Raw data
packets from the Velodyne are captured and logged.

The Point Grey Firefly MV cameras provide color imagery
of the vehicle’s surrounding area, and image timestamps
were acquired by exploiting the independent 8 kHz Firewire
clock. All five cameras are roof mounted, and are positioned
and oriented as depicted in Fig. 2(a). One camera is rear-
facing, two face forward with different focal lengths, and
two cameras provide side views. All cameras are spatiotem-
porally decimated to 376x240 and 10 Hz in the log file. The
wide-angle forward-facing camera was logged at a higher
resolution of 752x480 and framerate of 22.8 Hz in a separate
file.

Sensors are distributed across computers to minimize
latency and maximize fault-tolerance. As sensor data is
received by the host computers, it is timestamped using
the host computer clock along with clocking information
available from the device. This fusion of synchronization
information makes the timestamps robust to timing jitter that
could otherwise occur on the non real-time Linux machines.

Each packet of sensor data is then retransmitted over
the network using the Lightweight Communications and
Marshalling (LCM) protocol [Huang et al., 2009], where it
is captured by a logging process, timestamped again, and
stored on disk. As a result, events have two timestamps: the
time that the event was logged to disk, and the recovered
time of the event itself.

B. Inter-host Time Synchronization

The clocks on each of the 10 computers are synchronized
with a simple protocol that designates a single server as the
“master” clock. Every other computer continually estimates

its clock skew relative to the master clock by measuring the
round-trip-time (RTT) of small packets periodically trans-
mitted to the master. Non-master clocks are then slewed to
correct for the estimated skew. In practice, measured RTT
was often less than 100µs, which we consider to be a
conservative upper bound on the clock skew. The Network
Time Protocol (NTP) was also considered [Mills, 1992], but
the trivial topology of our network allowed for more accurate
synchronization with a simpler method.

C. Coordinate Frame

When fusing sensor data and GPS-referenced coordinates
into a common reference frame, our system uses a local
coordinate frame defined such that the vehicle pose is
the integrated result of its successive relative pose esti-
mates [Moore et al., 2009]. This provides a reliable way
to build locally valid maps using recent sensor data with
minimal noise, and is not subject to sudden jumps and
discontinuities in a globally-referenced frame such as GPS.

This data set contains two sets of pose estimates. The first
set describes the pose of our vehicle within this local frame.
The second set provides GPS estimates and also defines
the transformation between GPS coordinates and the local
frame.

III. SENSORCALIBRATION

Our acquisition platform encompasses a number of sen-
sors, each statically mounted in a different location with a
different orientation, and each with its own internal coor-
dinate system (Fig. 2). To perform fusion and reasoning in
a single consistent 3D reference frame, we associate with
our data sets a static set of configuration parameters. These
parameters, recorded in thecalibration section of the
text filelr3.cfg, define the geometric transformations that
align each sensor’s measurements to a fixed reference. We
assign to every sensor a 6-DOF extrinsic pose consisting of
3D position and orientation with respect to the body frame of
the vehicle. Each camera also includes parameters describing
its lens that allow transformation of pixel coordinates into 3D
rays.

Fig. 3. Coordinate system conventions for the vehicle body frame, and for
cameras and laser range sensors relative to the body.

The extrinsic calibration of a sensor is specified as a
rigid-body transformation that transforms 3D points in the
sensor’s internal coordinate frame to the vehicle body frame.



(Fig. 3). The internal coordinate system of a range sensor
is defined by the zero-bearing (x axis) andπ/2 bearing (y
axis) directions at zero elevation. In camera coordinates,the
origin is the lens’s 3D focal point, thex axis points from
left to right in the image, and thez axis points in the view
direction orthogonal to the projection plane. We specify all
five parameters of the pinhole projection matrixK, namely

K =





fx s cx
0 fy cy
0 0 1





wherefx and fy represent the horizontal and vertical focal
lengths in pixels,s represents the pixel skew, and(cx, cy)
represents the principal point in pixels. We also employ an
analytically invertible radial lens distortion model consisting
of the center of distortion and a single control parameter
[Tordoff and Murray, 2000].

Since management of these parameters is cumbersome, we
devised a number of offline, semi-automated techniques to
calibrate the sensors. The 6-DOF poses of the laser range
units are estimated jointly using vertical traffic posts arrayed
in an arbitrary pattern on level ground. We slowly drive
the vehicle amid and around the posts, associating post-like
features observed in the laser scans over time and thus form-
ing “tracks” for each post. Relying on highly accurate time
synchronization and navigation state (3D vehicle positionand
orientation), we perform nonlinear stochastic optimization
over the unknown sensor poses to minimize the covariance
of post tracks when transformed into the local frame (from
sensor to body frame via the current parameter estimates,
and from body to local frame via the navigation data). The
cost minimized is

C =
N
∑

i=1

Mi
∑

j=1

(pij(Ψ, A(tij))− p̄i)
2

whereN is the number of posts detected,Mi is the number
of observations of posti, pij is thejth observation of posti in
the local frame, and̄pi is the best known position estimate
of post i in the local frame as determined by the sensor.
The pointspij are transformed from each sensor’s internal
reference frame by the current 6-DOF parameter estimates
Ψ consisting of sensor roll, pitch, yaw, and 3D position, as
well as the (known) rigid body-to-local transformationA at
the time of observationtij .

Camera positions are measured by hand, and lens pa-
rameters are determined automatically by applying a variant
of Zhang’s method [Zhang, 2000]. Camera orientations are
determined automatically by driving the vehicle through
various turn maneuvers in a highly-textured environment,
and comparing epipolar geometry observed in the images
[Hartley and Zisserman, 2004] with known vehicle body
motion, again relying on accurate navigation state. Each
estimated camera rotation, combined with the known vehicle
rotation over the corresponding time interval, provides a
constraint on the sensor-to-body alignment; the set of all such
constraints guides a nonlinear least squares cost minimization

Mission Duration Distance LCM Log Size Camera Log Size
1 10,947 s 30.0 km 74 GB 18 GB
2 5,428 s 21.5 km 38 GB 10 GB
3 10,414 s 41.2 km 72 GB 18 GB

TABLE I

M ISSION SUMMARIES

algorithm to produce the optimal camera orientation with
respect to the vehicle body. The cost minimized is

C =
N
∑

i=1

Mi
∑

j=1

(lij(pij ,Ψ, A(ti)) · qij)
2

whereN is the number of sequential image pairs used for
calibration,Mi is the number of point feature correspon-
dences across image pairi, and lij is the epipolar line
associated with the undistorted image point feature pair
consisting ofpij in one image andqij in the other. Here,lij
is computed frompij as a function of the current estimates
of the camera’s roll, pitch, and yaw anglesΨ, its known 3D
position, and the known rigid body-to-local transformation
A at the time of image acquisitiontij .

IV. DATA

Each vehicle in the Urban Challenge was required to
autonomously complete three mock supply missions. In each
mission, the vehicle was required to visit a series of GPS
waypoints in a specific order. The amount of time our vehicle
spent on each mission, in addition to the distance traveled,
is shown in Table I.

This data set consists of two files for each mission. One
file contains the high-resolution image data for the wide-
angle forward-facing camera, captured at 22.8 Hz. This file
is simply a TAR archive of JPEG files; the name of each file
corresponds to the time at which the image was acquired,
measured in microseconds since 00:00:00 Jan 1, 1970 UTC.

The second file contains the remaining sensor data (includ-
ing low-resolution image data for all cameras), and is stored
in the LCM log file format. This format is useful for storing
many heterogeneous streams of synchronized data, and is
described in the accompanying source code. Conceptually,
an LCM log file is an ordered list of events, where each
event corresponds to a timestamped data packet. Each event
is also associated with a named channel, e.g. “POSE” for
the Applanix-derived pose estimates. Table II describes each
channel in this data set.

A. LCM Types

In order to efficiently represent complex data structures in
a compact and easily accessible manner, each data packet in a
log event is serialized with the LCM marshalling tools. LCM
provides a language-agnostic type-specification languagethat
allows users to define custom data types. Automatically
generated language bindings then provide a fast and easy way
to both represent these data structures in a specific language,
and to serialize the data structures to and from a binary blob.



Channel Description Rate
POSE Vehicle pose (local frame) 100 Hz
GPSTO LOCAL Vehicle pose (GPS) 100 Hz
CAM THUMB RFC Camera front wide6 , low-res. 10 Hz
CAM THUMB RFC 6mm Camera front narrow6 . low-res. 10 Hz
CAM THUMB RFR Camera left, low-res. 10 Hz
CAM THUMB RFL Camera right, low-res. 10 Hz
CAM THUMB RFR Camera rear, low-res. 10 Hz
BROOM L SICK pushbroom left 75 Hz
BROOM CL SICK pushbroom left-center 75 Hz
BROOM C SICK pushbroom center 75 Hz
BROOM CR SICK pushbroom right-center 75 Hz
BROOM R SICK pushbroom right 75 Hz
SKIRT FL SICK skirt front-left 75 Hz
SKIRT FC SICK skirt front-center 75 Hz
SKIRT FR SICK skirt front-right 75 Hz
SKIRT RC HI SICK skirt rear-high 75 Hz
SKIRT RC LO SICK skirt rear-low 75 Hz
VELODYNE Velodyne 15 Hz

TABLE II

LCM CHANNELS

struct laser_t
{
int64_t utime ;

// range data (meters)
int32_t nranges ;
float ranges [ nranges ] ;

// intensity data, in sensor-specific units
int32_t nintensities ;
float intensities [ nintensities ] ;

// the angle (in radians) to the first point
float rad0 ;

// the number of radians between each
// successive sample
float radstep ;

}

Fig. 4. The LCM type definition specifying how SICK data in ourlog
files is formatted. Additional type definitions in the accompanying source
code specify the structure of other logged data.

Instead of describing the binary layout of each data type,
we provide the LCM type definitions, and a brief overview
on how the type definition dictates the structure of the binary
blob. Fig. 4 shows the type definition describing how SICK
data is represented in our log files. Additional type definitions
in the accompanying source code describe the format of the
pose estimates, camera data, and Velodyne data.

Each encoded packet begins with an 8-byte type signature,
which is used by LCM for runtime type checking and
can be safely ignored in this context. Next, each field
is packed in the order it appears in the type definition.
The size of an integer field is indicated by its field name
(int8 t, int16 t, int32 t, int64 t), and multi-
byte integers are packed in network byte order. Single- and
double-precision floating point values (float anddouble,
respectively) are encoded using the IEEE 32- and 64-bit
formats, also appearing in network byte order. Thebyte
field can be treated as identical to theint8 t field.

Fig. 5. A screenshot of the Linux visualization software. This application
provides an interactive and more intuitive 3D view of data in our log files.

Some fields appear as fixed-length or variable-length ar-
rays. Fixed-length arrays are declared in the type definition
using a C-style syntax, and decoding one simply involves
decoding a fixed number of individual elements. The length
of a variable-length array is determined by another field in
the type, named in the type definition. Once the length of a
variable-length array has been determined by decoding the
value of the length-specifying field, the array is decoded in
the same fashion as a fixed-length array.

B. Source Code and Data

The data files and accompanying source code can be
downloaded from:
http://dgc.mit.edu/wiki/index.php/PublicData

This data set includes a modified version of the automat-
ically generated C language bindings for parsing the binary
blobs in each log event, and no external software libraries are
required to decode the log files. Additionally, C source code
is provided that is able to iterate through the events in a log
file and also project sensor data into a common coordinate
frame (the local frame [Moore et al., 2009]). Short example
programs are provided that illustrate how to accomplish each
of these tasks.

In addition to these portable examples, we also distribute
a Linux-specific tool for graphical visualization of logged
data. The visualization tool projects all sensor data into the
local frame and provides an interactive viewing environment.
It served as one of the primary development tools during the
design and implementation of our vehicle, and we highly
recommend its use when access to a Linux development
platform is available. Fig. 5 shows a screen capture.

V. SUMMARY

We have presented a data set that documents in great
detail the DARPA Urban Challenge from the perspective of
the MIT vehicle. Data from calibrated cameras, laser range
scanners, and navigational sensors provide a 7-hour data set
of autonomous vehicle operation that spans 90 km of travel
through a variety of road conditions. This data set is being



provided to the community to aid progress in autonomous
vehicle research, for example through comparative evaluation
of different algorithms implemented with the data.
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