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Sensor Fusion for Flexible Human-Portable Building-Scale Mapping

Maurice F. Fallon, Hordur Johannsson, Jonathan Brookshire, Seth Teller and John J. Leonard

Abstract— This paper describes a system enabling rapid
multi-floor indoor map building using a body-worn sensor
system fusing information from RGB-D cameras, LIDAR,
inertial, and barometric sensors. Our work is motivated by
rapid response missions by emergency personnel, in which the
capability for one or more people to rapidly map a complex in-
door environment is essential for public safety. Human-portable
mapping raises a number of challenges not encountered in
typical robotic mapping applications including complex 6-DOF
motion and the traversal of challenging trajectories including
stairs or elevators. Our system achieves robust performance
in these situations by exploiting state-of-the-art techniques for
robust pose graph optimization and loop closure detection.
It achieves real-time performance in indoor environments of
moderate scale. Experimental results are demonstrated for
human-portable mapping of several floors of a university
building, demonstrating the system’s ability to handle motion
up and down stairs and to organize initially disconnected sets
of submaps in a complex environment.

I. INTRODUCTION

In this paper, we outline the systems and methodologies
used to develop an interactive, multi-user, body-worn map-
ping system. The goal is to enable natural exploration and
provide situational awareness of a multi-floor building, where
GPS access is denied. The approach is motivated by the need
for emergency responders, security and military personal to
quickly develop knowledge about their environments.

Our prototype mapping system fuses visual, LIDAR, IMU
and barometric sensor data from each user to generate robust
maps of the environment. Although similar to a typical
robotic Simultaneous Localization and Mapping (SLAM)
task, the multi-user, body-worn system provides several
unique challenges:

• The path from any single user may not be continuous
(e.g., the user may travel up stairs or elevators).

• Sensors may not maintain a fixed pose relative to the
plane of travel (e.g., LIDAR returns may not be parallel
to the ground).

• Wheel odometry, typically used to estimate incremental
translation, will not be available. All egomotion must,
thus, be estimated from the other sensors.

Beyond these challenges, our mapping system faces sim-
ilar issues associated with any multi-agent SLAM such
as: efficiently combining map representations from different
sources, the gradual increase in computation due to a growing
SLAM problem, and communication constraints which limit
the distribution of maps between users. We specifically
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address the issue where multiple users will explore regions
which partially overlap.

In this work, disjoint maps from a single user (as floor
levels are changed and revisited) and from multiple users
combine to form a set of partially overlapping maps. We use
visual information to propose similar locations and to infer
overlapping regions. Using these inter-map constraints, maps
can be aggregated in a single combined map.

In the following section, we review the background of per-
sonal localization and situational awareness systems and dis-
cuss our design prototype. Section III describes the hardware
and, in Section IV, we give an overview of the algorithmic
components of the mapping system. Given the challenging
application we wish to support, we outline modules for
estimating and correcting sensor tilt, floor traversals and user
detection in Section V.

II. BACKGROUND

Outdoor localization using GPS and Wi-Fi networks has
become ubiquitous and is provided by many modern mobile
phones. However, localization of individuals in indoor, un-
known environments is more challenging. Our motivating
example is a Biohazard Site Assessment team. In order
to support such a scenario, we require a system which
interacts minimally with the user and assumes no known
infrastructure.

The approach developed by [1] envisages the rapid de-
ployment of a RF sensor rig (containing 12-16 elements)
surrounding a building of interest which is coupled with
an user-mounted transmitter. The location of the user, typ-
ically a first responder, can then be triangulated to within
approximately one meter and displayed graphically on a
commander’s console.

Foot-mounted IMU-based relative motion estimation
methods have shown significant promise, including the work
by [2]. This approach demonstrated remarkable performance
(0.3% drift) and has been adapted to allow for continuous
localization within a known, multi-floor map [3] using a
particle filter.

The work described by [4] integrates step sensors, a
barometer, a magnetometer and an IMU with a GPS sensor
via EKF sensor fusion to estimate ego-motion with a very
accurate global position estimate (assuming occasional GPS
fixes).

FootSLAM [5], [6] utilizes similar input data and a
Dynamic Bayesian Network to produce a high level topology
of the path followed by a user within a SLAM framework. At
this stage of our platform development, we have excluded the



Fig. 1. A user carrying our prototype human-portable mapping system

foot-mounted IMU for experimental and practical reasons,
although these compelling demonstrations motivate its usage.

Each of these systems estimate the relative motion of
the user; however, in our envisaged applications, the layout
and structure of the environment is of primary importance.
Perhaps the platform most similar to ours is that developed
by [7], [8]. This man-portable platform contains several
LIDAR sensors as well as lateral cameras. The system uses
three orthogonal LIDARs to estimate pitch and roll and uses
LIDAR scan matching, aided by visual odometry, to build
maps. While the visualizations produced by this approach
are convincing, this large rig would be unappealing given
our first responder application domain.

Additionally, [9] demonstrates a hand-portable system
which carries out incremental 2-D scan matching using
LIDAR, having estimated the pitch and roll of the unit using
an IMU.

Finally [10] developed a light-weight cane-mounted
LIDAR-IMU device which enables localization for the blind
within a prior building model. This approach requires a
pedometer and the limited sensing capability would restrict
its utility.

III. HARDWARE

Our prototype system, shown in Figure 1, consists of a
vest-mounted sensor suite and an electronics backpack. The
sensor vest consists of a Microsoft Kinect RGB-D sensor,
Microstrain 3DM-GX3-25 IMU, and Hokuyo UTM-30LX
LIDAR. The electronics backpack includes a laptop, 12V bat-
tery (for the Kinect and Hokuyo) and a barometric pressure
sensor. The rig is naturally constrained to be within about
10 degrees of horizontal at all times, which is important
for successful LIDAR-based mapping (see Section V-B).
An event pushbutton, currently a typical computer mouse,
allows the user to ‘tag’ interesting locations on the map.

Additionally the map can be transferred wirelessly to a
handset for the user to visualize the current map in situ.
Regardless of these interactions, the core map system is
intended to be as passive as possible.

Given the dangerous nature of the end user scenario,
modification of the HazMat suit is generally impossible.
In fact, the suits are typically destroyed after use to avoid
contamination. In the future, we envisage that the final device
will be a hand-held unit, similar in size to a miner’s lamp or
discretely installed on the shoulder of the user.

IV. CORE MAPPING SYSTEM OVERVIEW

As mentioned previously, we aim to produce a metric map
for each separate floor with weak topological constraints
representing vertical transitions between floors (namely stair-
cases and elevators). It is important that this map be built
on-line by the laptop worn by the user and shared with other
members of the user’s team.

SLAM has been a core research focus within the robotics
community for many years. Developing from the modern
probabilistic framework outlined in [11], researchers initially
tackled the problem using the Extended Kalman Filter (EKF)
to jointly estimate the robot’s pose and environment map.
Using this approach it was observed that the combined state
vector of this system would grow linearly and the associated
covariance matrix quadratically with time [12].

While particle filter approaches [13] have been considered
to address complex data associations, recently smoothing
approaches have become dominant [14]. These approaches
recognize the sparse structure of the information form of
the covariance matrix to develop methods for efficient and
consistent optimization of the full trajectory and map.

Large scale, highly accurate LIDAR-based SLAM maps
can now be generated in real-time — typically using wheel
odometry. A core component of our SLAM system is accu-
rate incremental scan-matching; we employ the multi-level
resolution approach described by [15], [16]. Efficient pose-
graph optimization, such as g2o [17] and iSAM [18], allow
position error and uncertainty accumulated during explo-
ration to be removed by closing loops. These components
provide the core of our mapping algorithm.

Leveraging this basic SLAM expertise, we have made
specific design decisions and algorithm adaptations to allow
for flexible and robust body-worn mapping without placing
restrictions on the motion of the user.

V. MULTIPLE FLOOR AND USER MAPPING

Within the typical SLAM paradigm, a single robot ex-
plores its environment and extends its map while remaining
continuously localized. By actively planning its exploration,
the robot can avoid becoming lost or disconnected from a
previously explored location. In contrast, when the user tilts
the sensors aggressively, travels in elevators, or traverses
staircases, numerous disconnected and unorganized maps
will be generated. For example, the experiment discussed
in Section VI consists of 18 floor traversals over the course
of 31 minutes and results in floor maps greater than 100m
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Fig. 2. The components of our software system. Lemon colored com-
ponents represent raw streams of sensor measurements. Blue components
represent the filters, detectors and classifiers which build the maps. These
interact with a core database containing the filtered LIDAR and the RGB
SURF features.

across. Our approach aims to piece these maps together to
form a complete overview of the user’s exploration.

A. LIDAR Odometry and Visual Loop Closure

The major software components of the system are illus-
trated in Figure 2.

As the user explores, consecutive scan-matching is used to
infer relative motion. On a regular basis (2m or 30 degrees),
a new node is added to a SLAM graph representing the
combined incremental motion. In this way a single linear
graphical model is formed with no conflicting constraints.

Additionally, we search for loop-closures using two back-
end modules. The first module searches for matches between
scans located geometrically close to one another (according
the current SLAM graph) based on the following geometric
conditions:

1) The scans are more than 30 seconds separated.
2) The scan footprints overlap by 50 percent.
3) The proportion of returns matching exceeds 70%.
4) The scans contain more than one non-parallel wall

exceeding 2m.
These proposals are tested using the scan-matcher men-

tioned in Section IV. While the Hokuyo LIDAR sensor has
a range of 30m and a field of view of 270◦, our current
prototype obscures the sides of the scan; as a result, we
have found that long corridors within our test location lack
sufficient features to maintain accurate scan-matching. For
this reason, recurring failure of geometric condition (4) was
also used to initiate new submaps in these locations.

As mentioned above, numerous disconnected but overlap-
ping maps will be created via multiple staircase traversals
and multiple users. So as to organize and reconnect the
maps, we maintain a visual database of locations previously
visited using the DBow library [19] with SURF features [20]
extracted from the Kinect’s RGB camera.

Each visual location corresponds to a pose from the SLAM
graphical model (and hence a matching LIDAR pose). This

visual bag-of-words application implements the hierarchical
vocabulary tree described by [21] and an inverted file struc-
ture which allows for quick queries of matching pairs of
images. So as to allow efficient combination of previously
disconnected maps into a single combined map we utilize
the concept of an ‘Anchor Node’ introduced by [22].

In this approach, an auxiliary anchor node is added to each
individual pose graph during exploration. When an encounter
or visual loop closure is detected, the corresponding LIDAR
scans are scan-matched (initialized using zero pose offset)
to produce an inter-submap constraint. This approach is suc-
cessful because SURF features are reproducible only within a
50 degree viewing angle [20]. The constraint between the two
pose graphs is then expressed through the two anchor nodes
which allows the SLAM optimization engine to avoid re-
parameterizing each submap into a single global coordinate
frame at that instant. An example of a successful and failed
loop-closure are demonstrated in Figure 3.

(a) Geometric proposal with 130◦ orientation difference -
correctly accepted.

(b) Appearance proposal with a high scan-matching score -
correctly rejected as only a single line feature is present.

Fig. 3. Two challenging loop-closure scenarios.
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Fig. 4. The similarity matrix generated by exploring a particular location 3
times — as evidenced by the activity in off-diagonal elements of the matrix.



When submaps have been successfully merged, the geo-
metric loop-closure algorithm mentioned above is repeated to
further refine the map. While this step is not as critical as the
visual appearance-driven loop closings, given the complex
topologies described in the experimental section, it is useful
to densify connections between otherwise loosely connected
submaps.

Our approach intentionally does not tightly integrate visual
information with the LIDAR and, as a result, the intrinsic
calibration of the the camera and extrinsic calibration of the
various sensors are not required and can be time varying.
This approach was taken so that the design prototype could
be flexible and deformable.

B. Man-portable Considerations

In the following sections we will describe a series of
algorithms to detect unusable data, floor transitions and user
interactions. These algorithms acted as a pre-filter between
the raw incoming data and the SLAM system.

1) Tilt-correction: In a typical robotics application, the
LIDAR sensor is mounted entirely horizontal on a robot
moving horizontally. However on the pedestrian’s vest, the
sensor is subject to pitch and roll due to the user’s gait which
can quickly corrupt the map.

While one could consider the dependence on a single
approximately horizontal LIDAR as being a weak point
of this system, our experiments have shown that a user
with a natural walking gait collects laser scans suitable for
processing.

To correct for pitch and roll, we use an estimate of
the direction of gravity from the IMU to estimate the
pitch and roll of the sensor using the manufacturer-supplied
compensation filter. The LIDAR returns are projected on
to a horizontal plane before being inserted into the map.
Additionally, by using an estimate of the height of the sensor,
floor penetrating returns can also be discarded entirely. This
height was typically known in advance but could easily be
learned from the RGB-D sensor data. Beyond a pitch of
10 degree limits, the maximum range of the LIDAR before
ground penetration is about 5 meters (at a typical waist
height) which is too short for stable scan-matching.

C. Detecting Staircase Transitions

Detection of floor transitions is a primary capability re-
quired to enable free user motion within a large building.
Although we considered detecting the vertical component
of incremental visual odometry (aligned using the IMU’s
attitude estimate), this approach was not used here. Stairwells
are often unlit or featureless, and users tend to turn sharply
on intermediate landings causing frequent motion blur in the
Kinect RGB images.

To detect the floor transitions, we instead used a basic
barometric pressure sensor (Gulf Coast Data Concepts P/N
B1100-1). Figure 5 shows the raw results from the pressure
monitor (blue) as the user traveled up and down six flights
of stairs. We found that the readings were consistent over
several hours, but varied over several days.
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Fig. 5. The raw pressure readings (blue) are processed using a Gaussian
mixture model to detect floors (green).

In order to accurately detect floors, we use a Gaussian
mixture model as presented in Algorithm 1. The raw pressure
reading, pnew is filtered by LPF to remove high frequency
noise. Since the change in floors is relatively slow, we use
a low pass filter with cutoff at 0.1Hz. Incoming samples
are then accumulated into a 10 second buffer, phist, via
Append. When the variance exceeds a threshold, thresh1,
we consider the user to be in a floor-transition state (i.e.,
going up/down the stairs).

When a floor-transition ends, BestFloor determines
whether the new readings are similar to a floor we have
already visited. Since each Gaussian corresponds to a floor,
the most similar floor is determined by finding the minimum
Mahalanobis distance between the mean of phist and each
Gaussian in the mixture, GM . If thresh2 is exceeded, a
new Gaussian model, GMnew is created for the new floor
via NewGM. When walking on the floor steadily, UpdateGM
updates the mean and covariance associated with the current
floor in GM .

The algorithm is executed once per pressure reading. If
m pressure samples are maintained for each Gaussian in the
mixture, the algorithm’s complexity is O(m), dominated by
the calculation of the mean and covariance of the Gaussian.

The results of the algorithm on a sample data set are shown
in Figure 5. Notice that the algorithm correctly determines
floor transitions on the way up the stairs (times 0-550) and
then correctly identifies the previously visited floor on the
way down the stairs (times 550-800).

D. Detecting Elevator Transitions

We also explored the detection of elevator transitions.
While the barometer could again be used for this purpose,
when a user is stationary in an elevator there is a recog-
nizable and consistent acceleration profile observed in the
Z-component of the Microstrain IMU’s accelerometer as
illustrated in Figure 6. By integrating this measurement we
can more accurately quantify the magnitude of the vertical
transitions as the user is typically stationary for the duration.



Algorithm 1: EstimateFloor (pnew, f loor,GM, phist)
inputs : pnew raw pressure

floor current floor estimate
GM Gaussian mixtures
phist 10 second buffer of pressure data

outputs: floor floor estimate

pfilt ← LPF(pnew, 0.1Hz)
phist ← Append(phist, pfilt)
σp ← cov(phist)
onStairs← σp > thresh1
if state == ON FLOOR ∧ onStairs then

// walking into stairwell
state← ON STAIRS
floor ← ∅

if state == ON FLOOR ∧ ¬onStairs then
// on same floor, update the GM
UpdateGM(pfilt, GM [floor])

if state == ON STAIRS ∧ onStairs then
// still in stairwell
state← ON STAIRS

if state == ON STAIRS ∧ ¬onStairs then
// walking out of stairwell
state← ON FLOOR
[floornew, logProb]← BestFloor(phist, GM)
if logProb < thresh2 then

[floornew, GMnew]← NewGM(phist)
GM ← {GM,GMnew}

else
UpdateGM(pfilt, GM [floor])

floor ← floornew

Using a method similar to that described in Section V-C a
unique classification of the number and relative height of
specific floors is possible.

In future work, we aim to use this height information to
create full 3-D constraints between different floor maps and
to correctly align the maps with one another.

E. Integration with SLAM system

For the elevator transitions, we biased our thresholds
towards over-estimating the number of floor transitions so
that none were missed — even if this occasionally proposed
a spurious submap. Additionally, floor transition detectors
were typically used only to indicate the transitions but not
to infer the specific floor. For the staircase transitions, for
example, the algorithm does not necessarily provide floor
numbers corresponding to the physical ordering of floors.
Rather, it provides a unique number for each floor; this is
what is needed to associate maps as the user travels the
building.

For our practical experiments, we maintained a single
instance of SLAM for the duration of operation — with each
floor map retained in memory. While this raised the possi-

bility of incorrect loop closure between floors, say between
Floor 2 and Floor 3, we did not experience this issue in
practice. Nonetheless, robust loop-closure and introspection
is a major outstanding issue, we discuss this in Section VII.

VI. EXPERIMENTAL RESULTS

As a demonstrative example of performance, we carried
out an extensive multi-floor traversal in which the user
continuously explored three floors of our building, each being
more than 100m in the longest dimension. The results of this
experiment are presented in Figure 8.

By traversing staircases a total of 18 times, 19 submaps
were generated. These submaps were gradually connected
to one another when overlapping areas of the map were
discovered. By the end of the mission three complete maps
representing each floor were created.

For a couple of very short submaps insufficient evidence
was available to make connection to the main map —
usually because the particular submap was very short in
duration (sometimes less than a minute). These maps are
not illustrated in the figures and remained disconnected from
their relevant collective floor map. If subsequent information
would become available later these maps could then be
connected to the main map.

A. Multi-Session Mapping combining a Human and a Robot

As described above, the mapping and remapping of a
particular area becomes equivalent to connecting independent
pose trajectories to one another. Figure 9 illustrates the
map in Figure 8 subsequently extended by the addition of
information collected by a (teleoperated) robot. The human-
created map is colored orange and the robot’s contributions
are in purple. This particular map contains 17 inter-user loop
closures found first by visual loop-proposal means but later
further connected using geometric proposals.
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Fig. 7. Evolution of the submap topology for Floor 3. As time evolves
different (and non-consecutive) submaps are connected to one another until
all submaps form a single heavily-connected and unified map.

In our future work, we will extend our approach to support
mixed teams of robots and humans simultaneously exploring
and sharing maps (wirelessly) when encounters occur. This
area of research opens interesting trade offs between the dis-
tribution of map information and communication constraints.

VII. CONCLUSION

In this paper we present the algorithms and systems
developed to enable natural exploration and map-building of
multi-floor building by a person carrying a multi-sensor rig.

Our robust system demonstrates real-time, stable operation
in a challenging application for explorations of considerable
scale. However, for a practical system to scale limitlessly,
consideration must be given to 1) the continuously growing
pose graph and 2) addition of false loop-closures. In the case
of the former, sparsification of the pose graph by determining
the informational contribution of individual scans, as sug-
gested by [23], seems promising. This approach suggests a
SLAM system which scales with area explored rather than
time of exploration.

Fig. 9. A map combining two separate explorations — one from a human
system (C to D, orange) and a second from a robot (A to B, purple).

As the size of exploration increases, false loop-closures
become inevitable. Introspection on the low-level SLAM
system — completely removing a small set of patently incor-
rect constraints — seems necessary. An interesting approach
proposed in [24] achieves a robustness to false loop-closures
by disabling those with inordinate optimization cost.

A number of other avenues of future work remain. As
mentioned above, integration of the foot-mounted IMU sys-
tem mentioned in Section II would be a promising area of
future work — particularly when map segments cannot be
definitively reconnected with the main map. Even though in
this work only the color information from the RGB-D camera
is used a natural extension is to use the depth information
and a more visually-driven approach — similar to the authors
RGB-D localization work [25].
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(a) Maps of 3 floors simultaneously built in one instance of exploration. This figure shows time represented as the upward
axis. Approximately horizontal lines represent user motion during each floor traversal and vertical lines indicate confirmed
loop closures. From left to right the floors illustrated are the 1st, 2nd and 3rd floors.
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(b) Time evolution of the user’s location during exploration, in minutes. Three blue colors represent individual floors and red staircase
traversals.

(c) First floor - with 10 meter grid

(d) Third floor - with 30 meter grid.

Fig. 8. Continuous Man Portable Exploration over 3 floors with 18 staircase traversals and 19 submaps.


