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ABSTRACT

In this paper, we introduce an efficient maximum a pos-
teriori (MAP) estimation algorithm, which effectively tracks
multiple most probable hypotheses. In particular, due to mul-
timodal distributions arising in most nonlinear problems,we
employ a bank of MAP to track these modes (hypotheses).
The key idea is that weanalytically determine all the pos-
terior modes for the current state at each time step, which
are used to generate highly probable hypotheses for the en-
tire trajectory. Moreover, since it is expensive to solve the
MAP problem sequentially over time by an iterative method
such as Gauss-Newton, in order to speed up its solution, we
reuse the previous computations andincrementally update the
square-root information matrix at every time step, while batch
relinearization is performed only periodically or as needed.

Index Terms— Maximum a posteriori (MAP), QR fac-
torization, analytical solution, multi-hypothesis tracking

1. INTRODUCTION

Nonlinear estimation problems, such as target tracking, are
often addressed using linearized filters, e.g., extended Kalman
filter (EKF) [1, 2]. The performance of these filters can be
significantly degraded by large linearization errors as well as
the inability to track multimodal distributions (which arise in
most nonlinear estimation problems). To reduce linearization
errors, the iterated EKF (IEKF) [2] is often used, which it-
erates the filter update till convergence by relinearizing the
measurement function at each iteration. Alternatively, the
unscented Kalman filter (UKF) [3] deterministically samples
the nonlinear models around the current state estimate (i.e.,
statistical linearization), thus improving the linear approxi-
mation. However, any linearization-based filtering approach
marginalizes all but the current state, and hence is unable to
refine past linearization points.

In contrast, a batch maximum a posteriori (MAP) esti-
mator [4] computes the estimates for the states at all time
steps using all available measurements. This allows batch
relinearization (i.e., recomputing the Jacobian) of the entire
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state trajectory, thus greatly reducing the linearizationerrors.
However, the computational cost of the batch-MAP estima-
tor grows unboundedly as the size of its state vector increases
linearly over time. Moreover, as the EKF and its variants,
the batch-MAP estimator can only track one of the poten-
tially many modes of the posterior pdf. Even though multi-
hypothesis tracking algorithms, such as the multi-hypothesis
EKF (MHEKF) [5], are available to track a set of different
hypotheses, in most cases the hypotheses are generated ran-
domly, thus wasting considerable computational resources.

To address the aforementioned issues, in this paper we
introduce a bank of incremental MAP (B-iMAP) estimation
algorithm, which provides effective multi-hypothesis track-
ing and efficient incremental solutions. In particular, we
propose an efficient analytical hypothesis generation scheme
for MAP-based multi-hypothesis tracking. By transforming
the nonlinear cost function of the one-step MAP problem
for the current state into polynomial form, and employing
algebraic geometry techniques [6], we determine all the pos-
terior modesanalytically. Each mode is used to initialize a
new MAP in the bank, thus allowing to trackmultiple most
probable hypotheses of the trajectory. Note that in our prior
work [7] we successfully applied this method of analytically
selecting hypotheses to the particular problem of range-only
target tracking. Furthermore, when using the Gauss-Newton
method to solve the batch-MAP problem, in general, it is too
expensive to conduct the batch relinearization at every time
step. To speed up the batch solver, we reuse the previously-
computed Jacobians andonly compute the one corresponding
to the new available measurements, while relinearization is
performed periodically or as needed in order to reduce the
linearization errors. Although similar idea was used in our
recent work of robot localization and mapping [8], in this
paper we extend this methodology to a large class of nonlin-
ear systems and integrate it within the analytically-selected
multi-hypothesis tracking.

2. THE PROPOSED ALGORITHM

Consider the following general nonlinear system:

xk+1 = f(xk,uk) +wk (1)

zk = h(xk) + vk (2)



wherexk denotes the state of the system,uk is the control in-
put, andwk is zero-mean white Gaussian process noise, i.e.,
wk ∼ N (0,Wk); zk is the measurement, corrupted by mea-
surement noise,vk ∼ N (0,Vk). We aim to estimate the en-
tire state trajectory,xT

0:k =
[

xT
0 xT

1 · · · xT
k

]

, using all
available information. To this end, the batch-MAP estimator
is often employed to determine the entire trajectory estimate
x̂0:k|k that maximizes the following posterior pdf:1

p(x0:k|z0:k) ∝ p(x0)

k
∏

κ=1

p(xκ|xκ−1)p(zκ|xκ) (3)

wherep(x0) = N (x̂0|0,P0|0) is the prior distribution, and
z1:k denotes all the sensor measurements in the time inter-
val [1, k]. In (3), we have used the fact of independent state
and measurement noise and Markov system dynamics. Using
the assumption of Gaussian noise, the maximization of (3) is
equivalent to the minimization of the following cost function:

c(x0:k) =
1

2
||x0−x̂0|0||

2
P0|0

+ (4)

1

2

k−1
∑

κ=0

||xκ+1−f(xκ,uκ)||
2
Wκ

+
1

2

k
∑

κ=1

||zκ−h(xκ)||
2
Vκ

where we have employed the notation,||a||2Λ , aTΛ−1a.
This clearly is anonlinear least-squares problem [see (1)
and (2)]. A standard iterative Gauss-Newton approach is of-
ten used for its optimization, which, however, is only able to
converge to one local minimum within the basin of attraction
of the initial estimate. Hence, this approach heavily depends
on the quality of the initial estimate. In particular, at theℓ-th
Gauss-Newton iteration, a correction,δx

(ℓ)
0:k, to the current

estimate,̂x(ℓ)
0:k|k, is computed by minimizing the second-order

Taylor-series approximation of (4), which can be written as:

c(x̂
(ℓ)
0:k|k + δx0:k) ≃

1

2
||δx0||

2
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+ (5)
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(ℓ)
κ|k)−Hκδxκ||

2
Vκ

=: ||Aδx0:k − b||2

where we linearize the process and measurement models (1)-
(2) at the current state estimate, with the system and measure-

ment Jacabians,Φκ = ∂f
∂xκ

∣
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∣
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∣

xκ=x̂
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,

respectively. We now have alinear least-squares problem
w.r.t. δx0:k (5), whereA is the Jacobian matrix obtained
by appropriately stacking and weighting all the system and
measurement Jacobians, andb is the corresponding stacked

1Throughout this paper, the subscriptℓ|j refers to the estimate of a quan-
tity at time-stepℓ, after all measurements up to time-stepj have been pro-
cessed.̂x denotes the estimate of a random variablex.

residual vector. We employ QR-factorization [9] to solve the
problem of minimizing (5), i.e.,
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⇔ min
δx0:k

||Rδx0:k − d||2 (6)

where we have used the economic QR ofA [9], since it in
general is tall, i.e.,

A = Q

[

R

0

]

=
[

Q1 Q2

]

[

R

0

]

= Q1R (7)

Onceδx(ℓ)
0:k is found by back substitution (6), the new state

estimate is updated as:x̂(ℓ+1)
0:k|k = x̂

(ℓ)
0:k|k + δx

(ℓ)
0:k.

2.1. Analytical hypotheses

Since in general it is computationally intractable to solvethe
batch-MAP problem analytically [see (4)], we use the Gauss-
Newton iterative method to solve it at each time step. How-
ever, as mentioned before, any iterative approach only con-
verges to one local minimum, despite the fact that we often
have multimodal posterior pdfs. To address this issue, we
provide an effective way to generate multiple, most probable,
hypotheses, each of which is tracked by a MAP estimator.
Toward this end, we relax the problem of minimizing (4) and
incrementally solve a one-step MAP problem analytically. At
time-stepk, by fixing the past state estimatesx̂0:k−1|k−1 (i.e.,
assuming they are optimal), we approximate (4) as follows:

c(x0:k) ≃ c(x̂0:k−1|k−1) +
1

2
||xk − x̂k|k−1||

2
Pk|k−1

+
1

2
||zk − h(xk)||

2
Vk

(8)

whereN (x̂k|k−1,Pk|k−1) is the Gaussian prior pdf for the
current new statexk, and is computed by:

x̂k|k−1 = f(x̂k−1|k−1,uk−1) (9)

Pk|k−1 = Φk−1Pk−1|k−1Φ
T
k−1 +Wk−1 (10)

Now the one-step MAP problem of minimizing (8) becomes
equivalent to solving the following one-step minimization
problem only for the new state estimate:

min
xk

1

2
||xk − x̂k|k−1||

2
Pk|k−1

+
1

2
||zk − h(xk)||

2
Vk

(11)

In many cases (e.g., see Section 3), the optimality condition
of (11) can be transformed into a polynomial system of equa-
tions, which can be solved for all the local minima (corre-
sponding to all the modes of the posterior pdf)analytically
using algebraic geometry techniques [6]. Once all the local
minima are found, we use them along with the past state esti-
mates as accurate initial estimates for the MAPs in the bank.



2.2. Incremental QR update

When a new measurement,zk+1, becomes available,2 we
need to recompute the whole JacobianA, which is an expen-
sive operation in solving the batch-MAP problem. To save
computations, we reuse the previously-computed Jacobian
and incrementally update the QR factorization directly. In
particular, we augmentA (without recomputing it) with the
new weighted measurement JacobianHk+1 [see (7)]:

Ā :=

[

A

V
− 1

2

k+1Hk+1

]

=

[

Q1 0

0 I

]

[

R

V
− 1

2

k+1Hk+1

]

(12)

We now aim to decomposēA into triangular form (i.e.,
square-root information matrix). SinceA was already factor-
ized into the triangularR, we only need to zero out the
new block row of the weighted measurement Jacobian,

V
− 1

2

k+1Hk+1, in order to obtain the updated square-root in-
formation matrixR̄. This can be achieved efficiently, for
example, by Givens or Householder QR [9]. Similarly, the
corresponding new vector,̄d, can be obtained by applying the
same Givens rotations or Householder reflections to the aug-

mented residual vector,

[

d

V
− 1

2

k+1

(

zk+1 − h(x̂k+1|k)
)

]

. It is

important to note that, although relinearization is not needed
at each time step when a new measurement becomes avail-
able, in order to reduce the linearization errors, we relinearize
the system at the latest, and thus the best, state estimates pe-
riodically [8] or as needed (e.g., when the linearization point
significantly deviates from the current state estimate).

3. EXAMPLE: RANGE-ONLY TRACKING

In this section, we apply the proposed B-iMAP presented
in the preceding section to the particular problem of range-
only target tracking. Consider a single sensor moving in a
plane and estimating the state (position, velocity, etc.) of
a moving target, by processing the available range mea-
surements. The target state at time-stepk is defined as a
vector of dimension2N , whereN − 1 is the highest or-
der of the time derivative of the target position described
by a known stochastic motion model. It can include com-
ponents such as position, velocity, and acceleration, i.e.,
xT
k =

[

xTk
yTk

ẋTk
ẏTk

ẍTk
ÿTk

· · ·
]

, where

pTk
:=

[

xTk
yTk

]T
is the target position, anddTk

:=
[

ẋTk
ẏTk

ẍTk
ÿTk

· · ·
]T

denotes all the higher-order
time derivatives of the target position.

We consider the case where the target moves randomly
but assume that the stochastic model describing the motion of
the target (e.g., constant acceleration or constant velocity [2])
is known. In particular, the discrete-time state propagation

2The dynamic constraint (1) can be treated analogously as a measurement.

equation is given by the following linear form:

xk =Φk−1xk−1 +Gk−1wk−1 (13)

wherewk−1 is zero-mean white Gaussian noise with covari-
anceWk−1; and the state transition matrix,Φk−1, and the
process noise Jacobian,Gk−1, depend on the motion model
used [2]. We will make no further assumptions on these ma-
trices other than that their values are known. In the case where
a single sensor measures its distance to the target, the range-
only measurement equation at time-stepk is given by:

zk =
√

(xTk
− xSk

)2 + (yTk
− ySk

)2 + vk (14)

wherepSk
:= [xSk

ySk
]T is the known sensor position ex-

pressed in the global frame of reference, andvk is the zero-
mean white Gaussian measurement noise with varianceσ2

k.

3.1. Analytically selecting hypotheses (posterior modes)

We now show how we solve (11) analytically in the case of
range-only tracking, whose solutions (posterior modes) are
used to generate the most probable hypotheses for the entire
trajectory. By observing that the range measurement depends
only on the target position, as shown in [7], we can decouple
the target positionpTk

and the remaining statesdTk
in solv-

ing (11). Hence, we hereafter focus on the following mini-
mization w.r.t. the target position, while the remaining states
can be directly inferred from the optimal solution of (15).

min
pT

k

1

2
||pTk

−p̂Tk|k−1
||2Ppp

k|k−1
+
1

2
||zk−h(pTk

)||2σ2
k

(15)

wherePpp
k|k−1

is the covariance matrix corresponding to the
target position, obtained by partitioning the covariance matrix

as:Pk|k−1 :=

[

Ppp
k|k−1

Ppd
k|k−1

Pdp
k|k−1

Pddk|k−1

]

. To solve (15) analyt-

ically, by introducing a new variableρk = h(pTk
), we have

the following equivalentconstrained minimization:3

min
pT

k
, ρk

1

2
||pTk

− p̂Tk|k−1
||2Ppp

k|k−1
+

1

2
||zk − ρk||

2
σ2
k

(16)

s.t. ρ2k = (xSk
−xTk

)2 + (ySk
−yTk

)2 , ρk ≥ 0 (17)

We solve (16)-(17) by employing the method of Lagrange
multipliers [10]. Specifically, without loss of generality, by
assumingP−1

pp
k|k−1

:= Diag(s1, s2), the Lagrangian func-

tion is constructed as follows:4

L(xTk
, yTk

, ρk, λ)=
s1

2
(xTk

−x̂Tk|k−1
)2+

s2

2
(yTk

−ŷTk|k−1
)2

+
(zk − ρk)

2

2σ2
k

+ λ
(

ρ2k−(xSk
−xTk

)2−(ySk
−yTk

)2
)

(18)

3Similar derivations of analytically solving (11) can be found in our pre-
vious work [7], which are briefly described here for completeness.

4We can always diagonalizeP−1
ppk|k−1

by applying a 2D rotational trans-
formation, which does not affect the distance measurements. Moreover, we
here temporarily omit the positivity constraint onρk, which will be used later
for determining the feasible solutions.



whereλ is the Lagrange multiplier. Setting the derivatives of
L(·) w.r.t. the four optimization variables to zero, and per-
forming simple algebraic manipulations, we obtain:

∂L

∂xT

= 0 ⇒ xTk
=

s1x̂Tk|k−1
− 2λxSk

s1 − 2λ
(19)

∂L

∂yT
= 0 ⇒ yTk

=
s2ŷTk|k−1

− 2λySk

s2 − 2λ
(20)

∂L

∂ρk
= 0 ⇒ ρk =

zk

1 + 2σ2
kλ

(21)

∂L

∂λ
= 0 ⇒ 0 = ρ2k−(xSk

−xTk
)2−(ySk

−yTk
)2 (22)

We substitute (19)-(21) into (22) and multiply both sides
of (22) with (1 + 2σ2

kλ)
2(s1 − 2λ)2(s2 − 2λ)2, to obtain a

fourth-orderunivariate polynomial inλ, i.e., 0 = f(λ) =
∑4

i=0 aiλ
i, whereai, i = 0, . . . , 4, are the coefficients ex-

pressed in terms of the known quantitiess1, s2, zk, σk,
x̂Tk|k−1

, ŷTk|k−1
, xSk

, andySk
. Sincef(λ) is quartic, we

compute its roots in closed form. Although, in general, there
exist 4 solutions forλ and thus 4 solutions forxTk

, yTk
and

ρk, as they depend injectively onλ [see (19)-(21)], we only
need to consider the pairs(xTk

, yTk
) that correspond to real

solutions forλ and to a nonnegativeρk [see (17)]. Moreover,
since some of these solutions could be local maxima or saddle
points, the second-order derivative test [10] is employed to
identify the minima. In fact, it was shown in [7] that there
are at most 2 local minima for the problem (15). Once all the
local minima for the target position are determined, we can
accordingly compute the corresponding estimates fordTk

[7].

3.2. Range-only tracking using the B-iMAP

When applying the proposed B-iMAP to range-only tracking,
the key idea is to use the analytically-computed local minima
at each time step as guidance to find the most probable hy-
potheses of the target trajectory, and then to track them effi-
ciently by incremental QR-factorization. Specifically, attime-
stepk−1, based on (9) and (10), we first propagate the current
state estimate corresponding to thei-th hypothesis and its co-
variance matrix,̂x[i]

k−1|k−1 andP[i]
k−1|k−1, i = 1, 2, . . . ,m (m

is the number of estimators in the bank at time-stepk − 1).
Then, once a new range measurement becomes available, the
propagated state estimate and covariance,x̂

[i]
k|k−1 andP[i]

k|k−1,
are used as the prior in (11). Next, we use the algebraic-
geometry method described in Section 3.1 to determine all
the local minima of (11) analytically, denoted byx[j]

k , 1 ≤
j ≤ 2m. For each of these solutions, we incrementally up-
date the QR factorization so as to efficiently solve for the en-
tire trajectory estimatêx[j]

0:k|k. Note that batch relinearization
is performed periodically everyτ time steps to reduce the lin-
earization errors. In the end, we will have multiple candidates
of the MAP estimate, among which the one with the least cost
is selected as the best estimate for the global optimum.
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Fig. 1. Monte-Carlo simulation results show that the proposed
B-iMAP achieves better accuracy than the B-MAP [7].

3.3. Numerical results

We validate the proposed B-iMAP in 100 Monte-Carlo sim-
ulations, as compared to the bank of MAP (B-MAP) [7].5

The B-MAP performs batch relinearization at every time step,
with marginalization of old states every 25 time steps to re-
duce the computational cost. In contrast, the proposed B-
iMAP periodically relinearizes the system everyτ = 10 time
steps,without marginalization. In both estimators, we prune
out the least probable hypotheses based on the MAP costs
and keepm ≤ 10 most probable hypotheses. In this test, we
adopt a zero-acceleration motion model [2] for the target [see
Fig. 1(a)], and set the standard deviation of the measurement
noise equal to 10% of the sensor-to-target distance. Fig. 1(b)
shows that the proposed B-iMAP, in average, performs19%
more accurately than the B-MAP, which even comes at a65%
lower cost. Specifically, the average CPU runtime (averaging
over all Monte Carlo runs and over all time steps) of our Mat-
lab implementation on a Core2 Quad CPU is 0.0416 sec for
the B-iMAP, compared to 0.1217 sec for the B-MAP. This su-
perior performance of the B-iMAP is attributed to the efficient
incremental update (see Section 2.2). This also implies that in
solving a batch-MAP problem, marginalization can be substi-
tuted, or at least postponed, by the application of incremental
QR update, while achieving better efficiency and accuracy.

4. CONCLUSIONS

In this paper, we have introduced a novel efficient multi-
hypothesis tracking algorithm, i.e., the B-iMAP. The key
idea of this approach is to analytically determine the most
probable hypotheses at each time step, which is attained by
transforming the one-step MAP problem into polynomial
form. By reusing the previous computations, the incremen-
tal QR-factorization is employed to efficiently track all the
hypotheses. We have applied the B-iMAP to the particu-
lar problem of range-only tracking and shown its superior
performance in terms of both accuracy and efficiency.

5As shown in [7], the B-MAP which also determines most probable hy-
potheses analytically, outperforms the standard multi-hypothesis tracking ap-
proaches, and thus we focus only on its comparison to the proposed B-iMAP.
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