
MIT Open Access Articles

Efficient incremental map segmentation in dense RGB-D maps

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Finman, Ross, Thomas Whelan, Michael Kaess, and John J. Leonard. “Efficient
Incremental Map Segmentation in Dense RGB-D Maps.” 2014 IEEE International Conference on
Robotics and Automation (ICRA) (May 2014).

As Published: http://dx.doi.org/10.1109/ICRA.2014.6907666

Publisher: Institute of Electrical and Electronics Engineers (IEEE)

Persistent URL: http://hdl.handle.net/1721.1/97582

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/97582
http://creativecommons.org/licenses/by-nc-sa/4.0/

Efficient Incremental Map Segmentation in Dense RGB-D Maps

Ross Finman1, Thomas Whelan2, Michael Kaess3, and John J. Leonard1

Abstract— In this paper we present a method for incremen-
tally segmenting large RGB-D maps as they are being created.
Recent advances in dense RGB-D mapping have led to maps of
increasing size and density. Segmentation of these raw maps is a
first step for higher-level tasks such as object detection. Current
popular methods of segmentation scale linearly with the size
of the map and generally include all points. Our method takes
a previously segmented map and segments new data added
to that map incrementally online. Segments in the existing
map are re-segmented with the new data based on an iterative
voting method. Our segmentation method works in maps with
loops to combine partial segmentations from each traversal
into a complete segmentation model. We verify our algorithm
on multiple real-world datasets spanning many meters and
millions of points in real-time. We compare our method against
a popular batch segmentation method for accuracy and timing
complexity.

I. INTRODUCTION

Many typical environments robots explore contain sources
of semantic information such as objects that may be of
use to either the robot or a user for scene understanding
and higher-level reasoning. The ability to distinguish and
recognize objects is an important task for autonomous sys-
tems if they are to reason more intelligently about their
environments. A common goal in robotics is to have robots
traverse environment and reason about the objects within
quickly and effectively. One challenge is having enough
data to distinguish objects from their surroundings. Advances
in RGB-D sensors such as the Microsoft Kinect provide
rich data to perceive and model objects in the world. A
common technique to make processing this rich data tractable
is to segment the dense data into coarser collections of data
using methods such as those developed by Felzenszwalb and
Huttenlocher [1] or Comaniciu and Meer [2].

There have been many algorithmic advances in dense
RGB-D simultaneous localization and mapping (SLAM) in
recent years [3]–[6] that combine raw data into rich 3-D
maps. We now desire to semantically segment these maps.
We have three main motivations for our method. First, in
maps of millions of data points over many meters, the
addition of new data should not affect the segmentation of
the entire map (in most cases, only the local areas where

1R. Finman and J. J. Leonard are with the Computer Science
and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute
of Technology (MIT), Cambridge, MA 02139, USA. {rfinman,
jleonard}@mit.edu

2T. Whelan is with the Department of Computer Science,
National University of Ireland Maynooth, Co. Kildare, Ireland.
thomas.j.whelan@nuim.ie

3M. Kaess is with the Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA 15213, USA. kaess@cmu.edu

Fig. 1. Top: RGB-D map being built with new data (left) being added
to the full map (right). Center: The new data segmented individually with
each segment randomly colored. Bottom: The newly segmented map with
the new data combined incrementally. Note: the top and center pictures have
the new data spaced apart for viewing purposes only.

the new data was added shall be modified). For example,
segmenting a cup in a kitchen would likely not affect how
the segmentation of a bed is done in a bedroom. Second, the
segmentation of a map should incorporate any loops or other
large updates to the map. As new data comes in that overlaps
with past data, both should be merged together (as shown in
Fig. 1) in an efficient manner. Lastly, for the segmentation
to be useful to a robot as it is traversing its environment, the
algorithm should run in real-time.

The key contribution of this work is a novel online
incremental segmentation algorithm that efficiently incor-
porates new data and gives very similar results to a batch
segmentation in real-time.

II. RELATED WORK

Some previous work using RGB-D data has focused on
segmenting raw RGB-D frames directly. Strom et al. [7]
developed a method for segmenting RGB-D range images
using a combination of color and surface normals. Holtz
et al. [8] developed a real-time plane segmentation method.
Both of these methods use the widely known Felzenszwalb
segmenter [1] as the fundamental segmentation algorithm.
Range images are limited in that they only offer a single
perspective of a scene, whereas a more complete 3-D recon-
struction of an environment can provide more useful data.

There are numerous methods for segmenting maps in a
variety of data domains. Wolf et al. [9] use map segmen-
tation of 3-D terrain maps to assist with classification of
traversable regions. Brunskill et al. [10] describe a 2-D map
segmentation method that builds a topological map of the
environment by incrementally segmenting the world using
spectral clustering.

In dense RGB-D sourced data, Karpathy et al. [11] use
segmentation of maps to perform object discovery by an-
alyzing shape features of extracted segments. Izadi et al.
[12] describe an impressive live segmentation within a dense
volumetric reconstruction using geometric tracking. These
methods are limited in the combined density and scale that
they can map. In larger size maps, Finman et al. [13] detail a
method for learning segmentations of objects in maps using
object change cues to optimize the segmentation. The three
aforementioned methods all perform the segmentation as a
batch process. Our work differs in that our segmentation is
incrementally built with any new data that is added to the
existing segmentation. To the best of our knowledge there
has been no presentation of an incremental segmentation
algorithm for large scale dense RGB-D sourced data as of
the time of writing.

III. BACKGROUND

We base our incremental segmentation algorithm, detailed
in Section IV, on the graph-based segmentation algorithm
from Felzenszwalb and Huttenlocher [1] since the underlying
greedy segmentation decisions are desirable for an incremen-
tal approach. Additionally, our work uses the output of the
existing Kintinuous RGB-D SLAM system [14]. We detail
both the Felzenszwalb segmenter and the Kintinuous system
below to provide the background for our method.

A. Graph-Based Segmentation

The popular Felzenszwalb algorithm [1] segments data
by building a graph connecting the data points in a local
neighborhood and then segmenting the graph according to
local decisions that satisfy global properties. This produces
reasonable segmentations of data efficiently. In the case of
3-D mapping, the input data D is a set of 3-D points from
a colored point cloud.

The method, Algorithms 1 and 2, first builds a graph using
each data point as a node and connecting each node with its
neighbors, defined as points within a radius r in Euclidean
space, with r being twice the volumetric resolution of the

Algorithm 1 Felzenszwalb Segmenter
Input: D: Set of new data points
Output: S: Set of segments

1: E ← BUILD GRAPH(∅, D)
2: S ← ∅
3: for i = 1 ... |D| do
4: Si ← {di, T} // Initialize each point to a segment
5: end for

// Segment Graph
6: for all eij ∈ E do
7: if wij < min(θi, θj) then
8: Sm ← ∅
9: dSm ← dSi ∪ dSj

10: θSm ← wij +
k

|dSm |
11: S ← {S \ {Si ∪ Sj}} ∪ Sm
12: end if
13: end for

map from Kintinuous. The null argument on line 1 refers to
the bordering points in Algorithm 2, used in Section IV. For
this problem domain, we define an edge eij between data
points di and dj as:

eij = edge(di, dj) = ((di, dj), wij) (1)

where wij is

wij(ni, nj) =

{
(1− ni · nj)2, if (dj − di) · nj > 0

(1− ni · nj), otherwise
(2)

using the surface normals ni and nj of points di and dj
respectively. This weighting method biases the weights to
more easily join convex edges by assigning them a lower
weight and gives higher weights to concave areas, which
usually correspond to object boundaries. This weighting
scheme has been used successfully in other works [11], [13],
[15]. Other weighting schemes such as color can also be used
in this framework. The graph segments are made up of data
points d and a segment threshold θ:

Si = {dSi , θSi} (3)

Where dSi is the set of points within the specific segment Si
and θSi is the joining threshold of Si from the segmentation
algorithm. The Felzenszwalb segmenter has two parameters,
T and k. T is the initial segmentation joining threshold θ that
each node is initialized to. A higher value of T yields an
easier initial joining of segments, while a lower value of T
makes the initial condition less likely. The second parameter,
k is positively correlated with segment size (k can be thought
of as a segment size bias). In the scope of this work, both
T and k are chosen to be 0.001 and 0.0005 respectively.
To be concise, all T , k, and r variables are not passed into
functions.

After the graph is built it is segmented based on the
criterion that the edge eij between two segments has a
wij that is less than both the θi and θj thresholds of
the corresponding segments. If that condition is met, the

Algorithm 2 Build Graph
Input: DB : Set of border points

D: Set of new data points
Output: E: Set of edges

1: E ← ∅
2: for all di ∈ D do
3: Ndi ← {dj ∈ {DB ∪D} | ‖di − dj‖ < r}
4: for dj ∈ Ndi do
5: E ← {E ∪ edge(di, dj)}
6: end for
7: end for
8: Sort edge vector E in ascending order by the

corresponding edge weights wij

0 200 400 600 800 1000 1200 1400 1600
0

1

2

3

4

5

6

7

8

9
x 10

−6

Join Number

θ

Fig. 2. Two graphs showing how the joining threshold θ changes for two
similarly sized segments with each new joining of segments (x-axis). The
absolute value of the joining threshold (y-axis) is dependent on the edge-
weighting scheme chosen so only the relative change over time is important.
Note the tendency for the threshold to decrease at the beginning and increase
at the end. This implies that initially, the segments can be more easily joined
at the beginning and are less easily joined towards the end of the segment’s
life. Also note the relative discontinuities in the threshold as large segments
are joined together.

segments are joined and the new segment’s θ is updated.
The θ update in line 10 of Algorithm 1 has a bowl shape
as the algorithm joins in more segments, as can be seen in
both examples in Fig. 2. Initially, the wij values are small
and the k

|Sm| term dominates so θm decreases; however as
the edge weights grow and the segment sizes stabilize, θm
increases. At any point, θm can go up or down depending on
these two opposing terms, as can be seen at approximately
the 1000th join operation of the red segment in Fig. 2 when
two larger segments werejoined together.

The complexity of this algorithm is O(|D| · E′ +
|E| log(|E|)) for building, sorting, and segmenting the graph
where E′ is the maximum number of neighbors of any data
point. Due to the order dependent loop over the edges, par-
allelization of the segmentation component of the algorithm
is non-trivial.

Algorithm 3 Incremental Segmentation
Input: S: Set of previous segments

D: Set of new data points
Output: S: Updated set of segments

1: c← 0
2: repeat
3: DB ← {dj ∈ {

⋃
Sp∈S

dSp}|∃di ∈ D s.t.‖di − dj‖ <

r}
4: E ← BUILD GRAPH(DB , D)
5: {D∆, S′} ← SEGMENT GRAPH(D,S,E,DB)
6: S∆ ← VOTE(D∆, D,E, S, c++)
7: D ← D

⋃
S∆
i ∈S∆

dS∆
i

8: S ← S \ S∆

9: until S∆ = ∅
10: S ← {S ∪ S′}

B. Kintinuous

Kintinuous is an RGB-D SLAM system that builds upon
KinectFusion by Newcombe et al. [4]. KinectFusion defines
a static cube in the global world in which local Kinect frames
are fused in real-time on a GPU to produce a dense 3-D
reconstruction of the scene. Kintinuous builds upon this idea
by moving the cube as the camera moves in the world, thus
having the capability of producing dense maps hundreds of
meters long, consisting of millions of points. As the cube
moves through an environment, the side of the cube opposite
the direction of the camera motion is removed and extracted
as a “cloud slice” in real-time consisting of 3-D colored
points. Examples of these cloud slices are shown in Fig. 1.

IV. INCREMENTAL SEGMENTATION

The previous section described an existing batch segmen-
tation method as well as the dense RGB-D SLAM system,
Kintinuous. In this section we will describe an incremental
version of the batch segmentation using the cloud slices that
are produced by Kintinuous.

Given an existing segmentation of a map S, we wish to add
new data points D incrementally to the map. We propose an
iterative voting algorithm (Algorithm 3) to re-compute part of
the existing map segmentation based on segmentation joining
cues. The algorithm finds the border points of the new data in
the old segments, then builds and segments the graph using
the new data and the borders. The segmentation includes
both the new segments and a list of potential joins between
the new data and the old segments. These discrepancies are
used to vote on adding previous segments to the new data.
This process is iterated until no new segments are voted to
be re-segmented with the new data.

Similarly to Algorithm 1, a graph is constructed for all of
the new data, treating each di ∈ D as a node and the edges
defined in (1). The difference between the batch case and the
incremental is that, while the new data is iterated over, the
neighborhood search, as shown in line 3 of Algorithm 2, is
over {DB ∪D}. Intuitively, the graph is being built between

Algorithm 4 Segment Graph
Input: D: Set of new data points

S: Set of previous segments
E: Set of edges
DB : Set of border points

Output: D∆: Set of discrepancy points
S′: Set of new segments

1: D∆ ← ∅, S′ ← ∅
2: for i = 1 ... |D| do
3: S′

i ← (di, T) // Initialize each point to a segment
4: end for
5:
6: for all eij ∈ E do
7: ti ← θS′i
8: if dj ∈ DB then
9: tj ← θSj

10: else
11: tj ← θS′j
12: end if
13: if wij < min(ti, tj) then
14: if dj ∈ DB then
15: D∆ ← D∆ ∪ dj
16: else
17: Sm ← ∅
18: dS′m ← dS′i ∪ dS′j
19: θS′m ← wij +

k
|dS′m |

20: S′ ← {S′ \ {S′
i ∪ S′

j}} ∪ S′
m

21: end if
22: end if
23: end for

all new data points and their neighbors both in the new data
and the existing map.

Once the graph is built, the algorithm then segments the
graph (Algorithm 4) into new segments S′ built from D. The
segment specific thresholds are based on either the segments
growing within D, or, if one of the edge nodes is outside
of D, the θj of the segment in S that contains dj . This
changes our incremental algorithm from the batch case since
the ordering of the joins, which is by increasing values of
wij , often would be computed differently. The intuition for
this change is that if the θj of Sj is higher than the wij when
looking at eij , S′

i and Sj would have been joined before, thus
suggesting that the current segment joining order is incorrect.
This is only an approximation since the θ values are not
monotonically increasing or decreasing, as shown in Fig. 2.
However this works well in practice due to the upward trend
of θ. Note that this approximation does not specify that the
two segments should be joined together, only that there is
likely a discrepancy in the ordering, where the points are
stored in D∆. Ideally, all edges along a border would have
a wij higher than both θ values.

After segmeting D, we seek a way to decide whether to re-
segment a subset of S based on D∆ if |D∆| > 0. On a high
level, our approach in Algorithm 5 first computes the fraction

Fig. 3. Example iteration step for adding new data to a map. On right:
the new data to be added to the existing map. Left: the new data and the
segments that were suggested to be redone after the first iteration. The first
segments joined are the wall and floor segments that the new data was
adding to.

of the edges suggested to be joined with an old segment and
the total number of edges in the old segment, and compares
that fraction to a threshold to determine whether to re-
segment a portion of S. Specifically, we take the fraction
of the number of edges between the new data and a segment
in S that are connected to a discrepancy point in D∆, and
the total number of edges between the new data and the
segment in S. That fraction is then compared to α(c), which
is defined as:

α(c) = 1− βc (4)

where β ∈ (0, 1) and c is the iteration of the high level
function. (In our experiments, we set β = 0.85, determined
empirically). Equation 4 offers a bias to segments that are
closer to the new data. Additionally, the value of β is
positively correlated with the number of segments to re-
segment. If the normalized number of discrepancy edges
is greater than α(c) the points of segment Si are added
to D to be re-computed in the next iteration. By having
the iteration c as the parameter for α(c) the connectivity
distance between re-segmented segments and the new data
can be large (up to the total number of points) since the size
of segments is unbounded (though biased by k). This allows
for the case that new data may change the ordering in such a
way that the θ values of the whole map should change, thus
re-segmenting the entire map. However we have observed in
our own experiments that this typically only occurs when the
map is quite small and is thus computationally cheap.

Algorithm 5 Vote
Input: D∆ Set of discrepancy points

D: Set of new data points
E: Set of edges
S: Set of previous segments
c: Loop iteration counter

Output: S∆: Set of segments to re-segment
1: S∆ ← ∅
2: Sδ ← {Si ∈ S | {D∆ ∩ dSi} 6= ∅}
3: for all Si ∈ Sδ do
4: if |{eij∈E | (dj∈{D∆∩dSi})}|

|{eij∈E | (di∈D),(dj∈dSi)}|
> α(c) then

5: S∆ ← S∆ ∪ Si
6: end if
7: end for

00.20.40.60.81
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
v
e
rl
a
p

v
i

Fig. 4. The plot of all vi values from Equation 5 for the Two floors dataset.
The x-axis is the value of vi and the y-axis is the cumulative percentage of
segments that have a greater vi. In practice, the segments that correspond
to objects and not walls or floors are more stable.

The process is iterative and may re-compute segments if
the θ values are not monotonically increasing or decreasing
(an example of which is shown in Fig. 3). As a result,
reusing the computation from previous iterations or from the
existing segments in S is non-trivial. While assuming that
θ is increasing towards the end of the segmentation works
for joining suggestions, as shown in Fig. 2, θ can increase,
decrease, or stay the same, and as such, generalizing the
change in θ is difficult. An alternative is to use a greedy
joining of segments between the existing map and the new
data based on previous θ values. This approach of joining
segments without recomputing all the points within them
leads to sharp discontinuities in the θ graph due to large
increases in |Sm| and potential significant decreases in wij ,
and thus under-segmenting the map in practice.

A. Timing

The complexity of our algorithm is as follows. Finding
the neighboring points of D in

⋃
Sp∈S dSp using a K-d tree

has an expected complexity of O(|D| · log(|
⋃
Sp∈S dSp |)).

Building the graph and then sorting the edges takes O(|D| ·
N ′ · log(|D∪DB |)+ |E| · log(|E|)) where N ′ is the maximal
number of neighbors of a point in D and |E| ≤ N ′ · |D|.
Segmenting the graph takes O(|E|) to iterate through all the
edges serially. Finally, voting on the segments to add takes
O(|D∆| · dS∗) where dS∗ is the maximum number of points
in a segment to be added to D. This has the potential to be
of the order |

⋃
Sp∈S dSp |, but in practice is significantly less.

The total complexity is O(|D| · log(|S|) + |E| · (log(|E|) +
log(|D ∪DB |)) + |D∆| · dS∗)). Each term has the potential
to be the slowest depending on the specifics of the data.
Additionally, as the algorithm depends on log(|

⋃
Sp∈S dSp |),

the complexity grows with the size of the map, however,
since we are not making assumptions about where data is
added, searching through S to find neighbors is unavoidable.
In the worst case, where all segments are re-segmented, the
algorithm runs with similar complexity to the batch case.

V. RESULTS

Defining a correct segmentation is an ambiguous prob-
lem since segmentation is context and application specific.
Instead, we compare our method against the widely used
batch method described in Section III-A. We compare our
method in two quantitative ways, similarity and timing,
and additionally present a qualitative analysis of multiple
datasets.

A. Quantitative Results

For quantitative similarity we compare our incrementally
built segments directly against the batch built segments.
For a segment Si ∈ I , where I is the incrementally built
map, we find the maximally intersecting segment Sg in the
globally built batch map G such that Si is also the maximally
intersecting segment of Sg .

dSγ ← argmax
dSg∈G

[
min

(|dSi ∩ dSg |
|dSi |

,
|dSi ∩ dSg |
|dSg |

)]
vi ← min

(|dSi ∩ dSγ |
|dSi |

,
|dSi ∩ dSγ |
|dSγ |

) (5)

The intuitive interpretation of vi is the percentage of mutual
overlap between two segments in I and G, so a higher vi
would correspond to a better match up to vi = 1, where the
overlap is exact. We plot the histogram of vi values in Fig. 4.
As can be seen, 81% of incrementally built segments have
a corresponding segment in the batch segmentation with a
vi = 1, indicating that most segments match well between
segmentations. In our experiments, most segments that do not
match are parts of the floor or walls, where the segmentation
algorithm over-segments the border with the new data. Such
segments are later not joined with, for example, a larger floor
segment because their corresponding θ values are developed
enough to suggest the smaller segments are their own seg-
ment. The edges between the smaller segments and the floor
do not suggest enough discrepancies in the segmentation to
re-segment the smaller segments. The fundamental issue that
causes this problem is the value of k (the scaling parameter)
in the segmentation. However, a higher k would lead to
smaller segments failing.

Next we compare the timing of the batch and incremental
segmentations; specifically, we analyze the time to incorpo-
rate the new data into the map. The batch timing is measured
by concatenating the new data with the existing data and
recomputing the full segmentation of that subset of points.
Fig. 5(a) shows a timing comparison between running the
batch algorithm and our incremental algorithm for every new
set of data from the Two floors dataset (shown partially built
in Fig. 8). As can be seen in Fig. 5(b), there are times when
new data is added faster than the incremental algorithm can
add the data to the segmentation. This introduces a lag when
segmenting the map. As can be seen in Table I, the maps
are processed in less total time than the map was built, as
the segmentation algorithm catches up. Table II shows the
breakdown of the lag seen in all three datasets. The test
platform used was a standard desktop PC running Ubuntu

0 100 200 300 400 500 600 700 800
0

2

4

6

8

10

12

14

Cloud Slices

T
im

e
 (

s
)

Time between slices

Batch Slices

Incr. Timing

(a) Timing Comparison

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Cloud Slices

T
im

e
 (

s
)

(b) Close Up Time Comparison

Fig. 5. (a) Timing of the batch algorithm (blue) and our incremental
algorithm (red) for the Two floors dataset shown in Fig. 8. The time between
cloud slices is shown in light grey. Note the linear growth of the batch
algorithm. (b) Expanded graph from (a) showing how our algorithm runs
as compared to the data added. The new data is added at a rate based on
the velocity and orientation of the RGB-D camera that captured the initial
data, and is subject to large variations in timing. In general, our algorithm
runs faster than the rate of new data acquisition, however, there are areas
where the data is added faster than it is processed, such as at index 650.

12.04 with an Intel Core i7-3960X CPU at 3.30GHz with
16GB of RAM. Our segmentation algorithm is computed on
the CPU to run in parallel with GPU-based Kintinuous.

B. Qualitative Results

We present a number of datasets collected with a handheld
camera of varying length that cover several static indoor
environments. Statistics on each dataset are shown in Table
I. All datasets were captured with a volumetric resolution
between 8.7 and 11.7 mm. Fig. 1 shows the segmentation
of our Office dataset. Fig. 6 shows the batch segmentation
of the Loop dataset, which can be qualitatively compared
to the incrementally segmented Loop dataset in Fig. 7. The
incremental segmentation of the Loop dataset highlights that
our algorithm works to semantically segment regions of a
map that were only both partially viewed at any one time.
Lastly, Fig. 8 shows a partially segmented map of the Two
floor dataset with a hallway leading up to a stairwell. We
provide additional qualitative results and visualizations of
the incremental segmentation in a video available at

Fig. 6. The Loop dataset segmented using the batch segmentation
algorithm. Comparing against the incrementally built version of the same
map in Fig. 7(c), one can notice that the segmentations are qualitatively
similar. The difference in colors is due to the random assignment of segment
colors.

http://people.csail.mit.edu/rfinman/
videos/icra2014.avi.

VI. CONCLUSION

In this paper we have presented a novel incremental
segmentation algorithm that efficiently adds new data to
an existing segmented map. With the goal of doing online
object segmentation and detection in multi-million point
point clouds, we have presented a method for adding to
and refactoring portions of an existing segmentation. Our
method is able to semantically join partial segments across
areas with overlapping data from multiple passes, e.g. areas
of loop closure, providing full segmentations. Lastly, our
method is capable of running in real-time enabling online
map segmentation.

In future work we aim extend this method in two primary
ways. First, to better reuse the previous segmentation compu-
tation by taking advantage of the segmentation tree implicitly
formed by the ordering of the segment joins. Second, to
incorporate this segmentation algorithm with object matching
and learning algorithms such as that of Finman et al. [13]
to perform online object detection over large scales in dense
RGB-D maps in real-time.

TABLE I
COMPUTATIONAL PERFORMANCE OF INCREMENTAL SEGMENTATION.

Datasets
Office Loop Two floors

Vertices 60,265 1,163,049 3,878,785
Cloud Slices 21 164 903
Map Build Time (s) 12.49 100.22 508.0
Map Length (m) 2.9 14.7 107.6
Quantity (per slice) Timings
Max (ms) 446.38 793.07 1,162.63
Min (ms) 2.88 4.80 3.75
Average (ms) 193.1 302.7 335.09
Total timing (s) 4.10 51.13 311.43

TABLE II
LAG ANALYSIS

Metric Datasets
Office Loop Two floors

Max cloud slices behind 2 2 11
Average cloud slices behind 0.2 0.9 3.4

http://people.csail.mit.edu/rfinman/videos/icra2014.avi
http://people.csail.mit.edu/rfinman/videos/icra2014.avi

(a) Half loop (b) Before Loop Closure (c) After Loop Closure

Fig. 7. (a) Incrementally segmented map of an office environment. (b) The segmented map just before the loop closure. (c) The segmented map with
the new data overlapping with the old map. Note that the floor, walls, and small objects along the border between the old and new data are segmented
correctly. Due to how the dataset was recorded, the floor was not mapped completely, and was broken into multiple segments accordingly.

Fig. 8. A segmented map of a corridor and staircase, with each segment randomly colored. Note the broad range of sizes of segments across the map.
The inset to the bottom right shows a zoomed in portion of the map of a cluttered computer desk area with chairs.

VII. ACKNOWLEDGEMENTS

This work was partially supported by ONR grants
N00014-10-1-0936, N00014-11-1-0688, and N00014-12-
10020, NSF grant IIS-1318392, and by a Strategic Research
Cluster grant (07/SRC/I1168) by Science Foundation Ireland
under the Irish National Development Plan, the Embark
Initiative of the Irish Research Council.

REFERENCES

[1] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based im-
age segmentation,” International Journal of Computer Vision, vol. 59,
no. 2, pp. 167–181, 2004.

[2] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward
feature space analysis,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 24, no. 5, pp. 603–619, 2002.

[3] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D
mapping: Using depth cameras for dense 3D modeling of indoor
environments,” in the 12th International Symposium on Experimental
Robotics (ISER), vol. 20, pp. 22–25, 2010.

[4] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges,
J. Shotton, D. Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon,
“KinectFusion: Real-time dense surface mapping and tracking,” in
Mixed and Augmented Reality (ISMAR), 2011 10th IEEE International
Symposium on, pp. 127–136, IEEE, 2011.

[5] H. Johannsson, M. Kaess, M. Fallon, and J. Leonard, “Temporally
scalable visual SLAM using a reduced pose graph,” in IEEE Intl.
Conf. on Robotics and Automation (ICRA), (Karlsruhe, Germany),
May 2013.

[6] T. Whelan, J. McDonald, M. Kaess, M. Fallon, H. Johannsson, and
J. Leonard, “Kintinuous: Spatially Extended KinectFusion,” in 3rd
RSS Workshop on RGB-D: Advanced Reasoning with Depth Cameras,
(Sydney, Australia), July 2012.

[7] J. Strom, A. Richardson, and E. Olson, “Graph-based segmentation
for colored 3D laser point clouds,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
October 2010.

[8] D. Holz, S. Holzer, and R. B. Rusu, “Real-Time Plane Segmentation
using RGB-D Cameras,” in Proceedings of the RoboCup Symposium,
2011.

[9] D. F. Wolf, G. S. Sukhatme, D. Fox, and W. Burgard, “Autonomous
terrain mapping and classification using hidden markov models,” in
Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005
IEEE International Conference on, pp. 2026–2031, IEEE, 2005.

[10] E. Brunskill, T. Kollar, and N. Roy, “Topological mapping using spec-
tral clustering and classification,” in Intelligent Robots and Systems,
2007. IROS 2007. IEEE/RSJ International Conference on, pp. 3491–
3496, IEEE, 2007.

[11] A. Karpathy, S. Miller, and L. Fei-Fei, “Object discovery in 3D scenes
via shape analysis,” in International Conference on Robotics and
Automation (ICRA), 2013.

[12] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,
J. Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon,
“KinectFusion: Real-Time 3D reconstruction and interaction using a
moving depth camera,” in Proc. of the 24th annual ACM symposium
on User interface software and technology, UIST ’11, (New York, NY,
USA), pp. 559–568, ACM, 2011.

[13] R. Finman, T. Whelan, M. Kaess, and J. Leonard, “Toward lifelong
object segmentation from change detection in dense RGB-D maps,” in
European Conference on Mobile Robots (ECMR), (Barcelona, Spain),
Sep 2013.

[14] T. Whelan, M. Kaess, J. Leonard, and J. McDonald, “Deformation-
based loop closure for large scale dense RGB-D SLAM,” in IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems, IROS, (Tokyo, Japan),
November 2013.

[15] F. Moosmann, O. Pink, and C. Stiller, “Segmentation of 3D lidar data
in non-flat urban environments using a local convexity criterion,” in
Intelligent Vehicles Symposium, 2009 IEEE, pp. 215–220, IEEE, 2009.

	I Introduction
	II Related Work
	III Background
	III-A Graph-Based Segmentation
	III-B Kintinuous

	IV Incremental Segmentation
	IV-A Timing

	V Results
	V-A Quantitative Results
	V-B Qualitative Results

	VI Conclusion
	VII Acknowledgements
	References

