Show simple item record

dc.contributor.authorSantana, Pedro
dc.contributor.authorThiebaux, Sylvie
dc.contributor.authorWilliams, Brian Charles
dc.date.accessioned2016-03-02T23:12:33Z
dc.date.available2016-03-02T23:12:33Z
dc.date.issued2016-02
dc.identifier.urihttp://hdl.handle.net/1721.1/101416
dc.description.abstractAutonomous agents operating in partially observable stochastic environments often face the problem of optimizing expected performance while bounding the risk of violating safety constraints. Such problems can be modeled as chance-constrained POMDP’s (CC-POMDP’s). Our first contribution is a systematic derivation of execution risk in POMDP domains, which improves upon how chance constraints are handled in the constrained POMDP literature. Second, we present RAO*, a heuristic forward search algorithm producing optimal, deterministic, finite-horizon policies for CC-POMDP’s. In addition to the utility heuristic, RAO* leverages an admissible execution risk heuristic to quickly detect and prune overly-risky policy branches. Third, we demonstrate the usefulness of RAO* in two challenging domains of practical interest: power supply restoration and autonomous science agentsen_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (Grant FA95501210348)en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (Grant FA2386-15-1-4015)en_US
dc.description.sponsorshipSUTD-MIT Graduate Fellows Programen_US
dc.description.sponsorshipNICTAen_US
dc.language.isoen_US
dc.publisherAssociation for the Advancement of Artificial Intelligenceen_US
dc.relation.isversionofhttp://www.aaai.org/Conferences/AAAI/2016/aaai16accepted-papers.pdfen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleRAO*: an Algorithm for Chance-Constrained POMDP’sen_US
dc.typeArticleen_US
dc.identifier.citationSantana, Pedro, Sylvie Thiebaux, and Brian Williams. "RAO*: an Algorithm for Chance-Constrained POMDP’s." Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) (February 2016).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.mitauthorSantana, Pedroen_US
dc.contributor.mitauthorWilliams, Brian Charlesen_US
dc.relation.journalProceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsSantana, Pedro; Thiebaux, Sylvie; Williams, Brianen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-1057-3940
dc.identifier.orcidhttps://orcid.org/0000-0001-8959-0059
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record