Show simple item record

dc.contributor.authorGe, Zhifei
dc.contributor.authorMoran, Jeffrey L.
dc.contributor.authorBuie, Cullen R.
dc.contributor.authorGarcia, Paulo
dc.date.accessioned2016-03-03T16:59:33Z
dc.date.available2016-03-03T16:59:33Z
dc.date.issued2016-02
dc.date.submitted2015-08
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/1721.1/101434
dc.description.abstractElectroporation is commonly used to deliver molecules such as drugs, proteins, and/or DNA into cells, but the mechanism remains poorly understood. In this work a rapid microfluidic assay was developed to determine the critical electric field threshold required for inducing bacterial electroporation. The microfluidic device was designed to have a bilaterally converging channel to amplify the electric field to magnitudes sufficient to induce electroporation. The bacterial cells are introduced into the channel in the presence of SYTOX[superscript ®], which fluorescently labels cells with compromised membranes. Upon delivery of an electric pulse, the cells fluoresce due to transmembrane influx of SYTOX[superscript ®] after disruption of the cell membranes. We calculate the critical electric field by capturing the location within the channel of the increase in fluorescence intensity after electroporation. Bacterial strains with industrial and therapeutic relevance such as Escherichia coli BL21 (3.65 ± 0.09 kV/cm), Corynebacterium glutamicum (5.20 ± 0.20 kV/cm), and Mycobacterium smegmatis (5.56 ± 0.08 kV/cm) have been successfully characterized. Determining the critical electric field for electroporation facilitates the development of electroporation protocols that minimize Joule heating and maximize cell viability. This assay will ultimately enable the genetic transformation of bacteria and archaea considered intractable and difficult-to-transfect, while facilitating fundamental genetic studies on numerous diverse microbes.en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency (Grant D13AP00025)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org.ezproxy.canberra.edu.au/10.1038/srep21238en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleMicrofluidic Screening of Electric Fields for Electroporationen_US
dc.typeArticleen_US
dc.identifier.citationGarcia, Paulo A., Zhifei Ge, Jeffrey L. Moran, and Cullen R. Buie. “Microfluidic Screening of Electric Fields for Electroporation.” Scientific Reports 6 (February 19, 2016): 21238.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorGarcia, Pauloen_US
dc.contributor.mitauthorGe, Zhifeien_US
dc.contributor.mitauthorMoran, Jeffrey L.en_US
dc.contributor.mitauthorBuie, Cullen R.en_US
dc.relation.journalScientific Reportsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsGarcia, Paulo A.; Ge, Zhifei; Moran, Jeffrey L.; Buie, Cullen R.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1677-4572
dc.identifier.orcidhttps://orcid.org/0000-0002-2275-4570
dc.identifier.orcidhttps://orcid.org/0000-0002-0464-0385
dc.identifier.orcidhttps://orcid.org/0000-0002-2593-055X
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record