Super Mario Bros. Is Harder/Easier than We Thought
Author(s)
Demaine, Erik D.; Viglietta, Giovanni; Williams, Aaron
DownloadSupermario Demaine.pdf (560.2Kb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
Mario is back! In this sequel, we prove that solving a generalized level of Super Mario Bros. is PSPACE-complete, strengthening the previous NP-hardness result (FUN 2014). Both our PSPACE-hardness and the previous NP-hardness use levels of arbitrary dimensions and require either arbitrarily large screens or a game engine that remembers the state of off-screen sprites. We also analyze the complexity of the less general case where the screen size is constant, the number of on-screen sprites is constant, and the game engine forgets the state of everything substantially off-screen, as in most, if not all, Super Mario Bros. video games. In this case we prove that the game is solvable in polynomial time, assuming levels are explicitly encoded; on the other hand, if levels can be represented using run-length encoding, then the problem is weakly NP-hard (even if levels have only constant height, as in the video games). All of our hardness proofs are also resilient to known glitches in Super Mario Bros., unlike the previous NP-hardness proof.
Date issued
2016-06Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer ScienceJournal
Proceedings of the 8th International Conference of Fun with Algorithms
Citation
Demaine, Erik D., Giovanni Viglietta, and Aaron Williams. "Super Mario Bros. Is Harder/Easier than We Thought." 8th International Conference of Fun with Algorithms (June 2016).
Version: Author's final manuscript