Show simple item record

dc.contributor.advisorAmos G. Winter, V.en_US
dc.contributor.authorPetelina, Nina T.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2020-02-10T21:40:45Z
dc.date.available2020-02-10T21:40:45Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/123743
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2019en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 79-82).en_US
dc.description.abstractWith about 440,000 people with an above-knee amputation in India alone, there is a great need for high performance prosthetic knee. Due to socio-economic stigma associated with amputation, one of the main requirements for a lower limb prosthesis is achieving able-bodied kinematics. However, the prostheses available in developing countries, such as India, primarily focus the design on stability and low cost. This study presents a shear-based rotary viscous damper design for late stance and swing flexion for a passive single-axis knee prosthesis. The optimal normalized damping coefficient range of 0.012 - 0.014 ... was determined by optimizing a set of passive components to replicate a knee moment for an able-bodied subject and transtibial amputee wearing a fully characterized prosthetic foot. Dampers with a stacked fin architecture, where a highly viscous fluid is sheared between neighboring disks, were built with a range of damping coefficients from 0.37 to 1.80 Nm/(rad/s). The performance of dampers was evaluated through field and clinical testing with unilateral transfemoral amputees. The results of the studies showed that not only damping is required to prevent hyper flexion, but the optimal damping range allows achieve a peak knee flexion close to able-bodied. In future design, the validated damping selection framework will be used to expand the prosthetic knee design to other gait activities such as walking at different speeds, on slopes or uneven terrains.en_US
dc.description.statementofresponsibilityby Nina T. Petelina.en_US
dc.format.extent82 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu.ezproxy.canberra.edu.au/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleExploring the role of damping in a passive prosthetic knee through modeling, design, and testingen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.identifier.oclc1138944868en_US
dc.description.collectionS.M. Massachusetts Institute of Technology, Department of Mechanical Engineeringen_US
dspace.imported2020-02-10T21:40:45Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentMechEen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record